

High Performance Sensorless Motor Control IC

Description

IRMCF183M is a high performance Flash based motion control IC designed and optimized for low cost appliance control which contains two computation engines integrated into one monolithic chip. One is the Flexible Motion Control Engine (MCETM) for sensorless control of permanent magnet motors or induction motors; the other is an 8-bit high-speed microcontroller (8051). The user can program a motion control algorithm by connecting these control elements using a graphic compiler. Key components of the complex sensorless control algorithms, such as the Angle Estimator, are provided as complete pre-defined control blocks. A unique analog/digital circuit and algorithm fully supports single shunt or leg shunt current reconstruction. IRMCF183M comes in a 32 pin 5x5 QFN package.

Features

- MCETM (Flexible Motion Control Engine) -Dedicated computation engine for high efficiency sinusoidal sensorless motor control
- Built-in hardware peripheral for single or two shunt current feedback reconstruction and analog circuits
- Embedded 8-bit high speed microcontroller (8051) for flexible I/O and man-machine control
- JTAG programming port for emulation/debugger
- Serial communication interface (UART)
- Watchdog timer with independent internal clock
- Internal 64Kbyte Flash
- 3.3V single supply

Product Summary

60 MHz
120MHz
30MHz
16 bit signed
52KB
4KB
12KB
2 µsec
20 bits/ SYSCLK
4
12 bits
2 µsec
8 bits
57.6K bps
7
QFN 5x5 32L
30mA

Base Part Number	Pookogo Typo	Standard	d Pack	Orderable Part Number
base Fait Number	Package Type	Form	Quantity	Orderable Fart Number
IDMOF402M OFNI22		Tape and Reel	3000	IRMCF183MTR
IRMCF183M	QFN32	Tray	3120	IRMCF183M

Table of Contents

1	Ove	erview	5
2	Pin	out	6
3	IRN	MCF183M Block Diagram and Main Functions	7
4		olication connection and Pin function	
	4.1	8051 Peripheral Interface Group	g
	4.2	Motion Peripheral Interface Group	10
	4.3	Analog Interface Group	
	4.4	Power Interface Group	11
	4.5	Test Interface Group	11
5	DC	Characteristics	12
	5.1	Absolute Maximum Ratings	12
	5.2	System Clock Frequency and Power Consumption	12
	5.3	Digital I/O DC Characteristics	13
	5.4	Analog I/O (IFBU+,IFBU-,IFBUO, IFBV+,IFBV-,IFBVO) DC Characteristics	14
	5.5	Under Voltage Lockout DC characteristics	15
	5.6	Itrip comparator DC characteristics	15
6	AC	Characteristics	16
	6.1	Digital PLL AC Characteristics	16
	6.2	Analog to Digital Converter AC Characteristics	17
	6.3	Op amp AC Characteristics	18
	6.4	SYNC to SVPWM and A/D Conversion AC Timing	19
	6.5	GATEKILL to SVPWM AC Timing	20
	6.6	Itrip AC Timing	20
	6.7	UART AC Timing	21
	6.8	Interrupt AC Timing	22
	6.9	JTAG AC Timing	23
7	I/O	Structure	24
8	Pin	List	27
9	Pac	ckage Dimensions	29
1(0 Pa	rt Marking Information	30
1	1 Qu	alification Information	30

List of Tables

Table 1 Absolute Maximum Ratings	12
Table 2 System Clock Frequency	12
Table 3 Digital I/O DC Characteristics	13
Table 4 Analog I/O DC Characteristics	14
Table 5 UVcc DC Characteristics	15
Table 6 Itrip DC Characteristics	15
Table 7 PLL AC Characteristics	16
Table 8 A/D Converter AC Characteristics	17
Table 9 Current Sensing OP Amp AC Characteristics	18
Table 10 SYNC AC Characteristics	19
Table 11 GATEKILL to SVPWM AC Timing	20
Table 12 Itrip AC Timing	20
Table 13 UART AC Timing	21
Table 14. Interrupt AC Timing	22
Table 15 JTAG AC Timing	23
Table 16 Pin Liet	28

List of Figures

Figure 1 Typical Application Block Diagram Using IRMCF183M	5
Figure 2 Pinout of IRMCF183M	6
Figure 3 Crystal circuit example	16
Figure 4 Voltage droop and S/H hold time	17
Figure 5 A capacitor of 47pF is recommended at the output pin of all op amps	18
Figure 6 SYNC timing	19
Figure 7 Gatekill timing	20
Figure 8 ITRIP timing	20
Figure 9 UART timing	21
Figure 10. Interrupt timing	22
Figure 11 JTAG timing	23
Figure 12 PWMUL/PWMUH/PWMVL/PWMVH/PWMWL/PWMWH output	24
Figure 13 All digital I/O except motor PWM output	24
Figure 14 RESET, GATEKILL I/O	25
Figure 15 Analog input	25
Figure 16 Analog operational amplifier output and AREF I/O structure	25
Figure 17 VPP programming pin I/O structure	26
Figure 18 VSS and AVSS pin structure	26
Figure 19 VDD1 and VDDCAP pin structure	26
Figure 20 XTAI 0/XTAI 1 pins structure	26

1 Overview

IRMCF183M is a new generation International Rectifier integrated circuit device primarily designed as a one-chip solution for complete inverter controlled appliance motor control applications. Unlike a traditional microcontroller or DSP, the IRMCF183M provides a built-in closed loop sensorless control algorithm using the unique flexible Motion Control Engine (MCE[™]) for permanent magnet motors as well as induction motors. The MCE[™] consists of a collection of control elements, motion peripherals, a dedicated motion control sequencer and dual port RAM to map internal signal nodes. IRMCF183M also employs a unique single shunt current reconstruction circuit in addition to two leg shunt current sensing circuit to eliminate additional analog/digital circuitry and enables a direct shunt resistor interface to the IC. Motion control programming is achieved using a dedicated graphical compiler integrated into the MATLAB/Simulink[™] development environment. Sequencing, user interface, host communication, and upper layer control tasks can be implemented in the 8051 high-speed 8-bit microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools. Figure 1 shows a typical application schematic using the IRMCF183M.

IRMCF183M is available in a 32-pin QFN package.

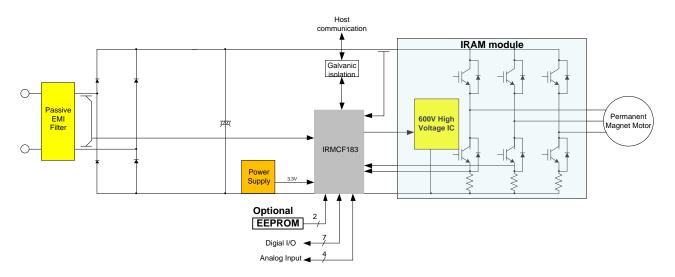


Figure 1 Typical Application Block Diagram Using IRMCF183M

2 Pinout

Pin out shown is based on QFN 5x5 32 pin package.

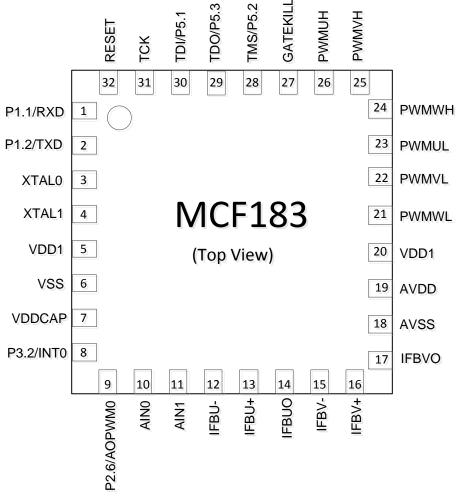


Figure 2 Pinout of IRMCF183M

3 IRMCF183M Block Diagram and Main Functions

IRMCF183M block diagram is shown in Figure 3.

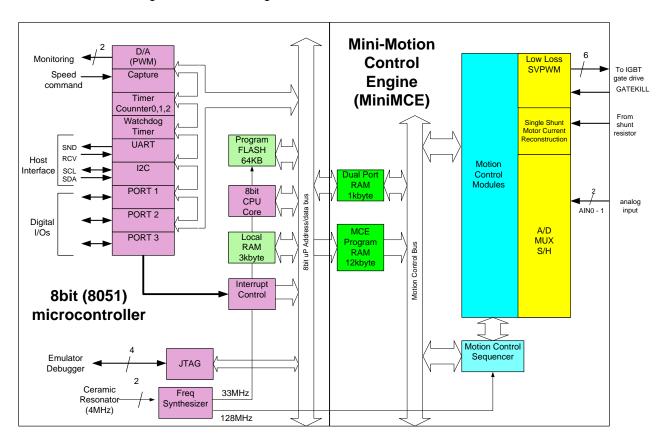


Figure 3 IRMCF183M Block Diagram

IRMCF183M contains the following functions for sensorless AC motor control applications:

- Motion Control Engine (MCETM)
 - Sensorless FOC (complete sensorless field oriented control)
 - Proportional plus Integral block
 - Low pass filter
 - Differentiator and lag (high pass filter)
 - o Ramp
 - o Limit
 - Angle estimate (sensorless control)

- o Inverse Clark transformation
- Vector rotator
- Bit latch
- Peak detect
- Transition
- Multiply-divide (signed and unsigned)
- o Divide (signed and unsigned)
- Adder
- Subtractor
- Comparator
- o Counter
- Accumulator
- Switch
- o Shift
- ATAN (arc tangent)
- Function block (any curve fitting, nonlinear function)
- 16 bit wide Logic operations (AND, OR, XOR, NOT, NEGATE)
- o MCE[™] program memory and dual port RAM (max 12K+2k byte)
- o MCETM control sequencer
- 8051 microcontroller
 - Two 16 bit timer/counters
 - One 16 bit periodic timer
 - One 16 bit watchdog timer
 - One 16 bit capture timer
 - Up to 7 discrete I/Os
 - 4 channel 12 bit A/D
 - Buffered (current sensing) two channels (0 1.2V input)
 - Unbuffered two channels (0 1.2V input)
 - JTAG port (4 pins)
 - Up to three channels of analog output (8 bit PWM)
 - UART
 - o 32K byte OTP program ROM
 - 2K byte data RAM

4 Application connection and Pin function

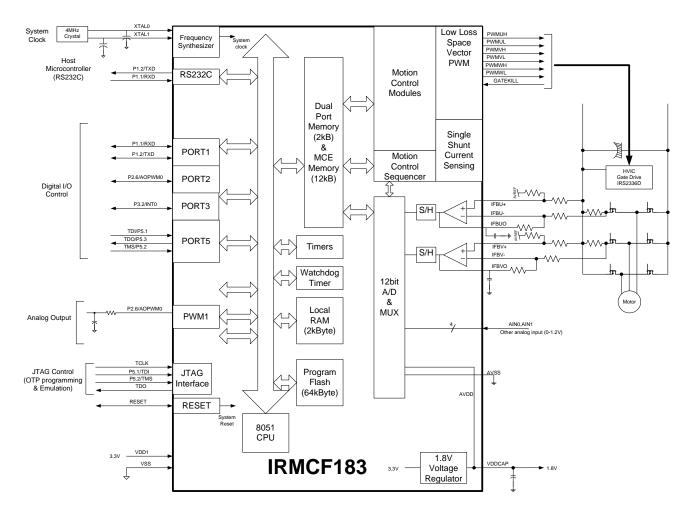


Figure 4 IRMCF183M Connection Diagram

8051 Peripheral Interface Group 4.1

UART Interface

P1.2/TXD Output, Transmit data from IRMCF183M P1.1/RXD Input, Receive data to IRMCF183M

Discrete I/O Interface

P1.1/RXD Input/output port 1.1, can be configured as RXD input P1.2/TXD Input/output port 1.2, can be configured as TXD output Input/output port 2.6, can be configured as AOPWM0 output P2.6/AOPWM0 Input/output port 3.2, can be configured as INT0 input P3.2/INT0

© 2014 International Rectifier

October 2, 2014

P5.1/TDI Input port 5.1, configured as JTAG port by default P5.2/TMS Input port 5.2, configured as JTAG port by default

Analog Output Interface

P2.6/AOPWM0 Input/output, can be configured as 8-bit PWM output 0 with programmable

carrier frequency

P2.7/AOPWM1 Input/output, can be configured as 8-bit PWM output 1 with programmable

carrier frequency

Crystal Interface

XTAL0 Input, connected to crystal XTAL1 Output, connected to crystal

Reset Interface

RESET Input and Output, system reset, doesn't require external RC time constant

4.2 Motion Peripheral Interface Group

PWM

PWMUH Output, PWM phase U high side gate signal, internally pulled down by $58k\Omega$ PWMVH Output, PWM phase U low side gate signal, internally pulled down by $58k\Omega$ PWMVL Output, PWM phase V high side gate signal, internally pulled down by $58k\Omega$ PWMWH Output, PWM phase V low side gate signal, internally pulled down by $58k\Omega$ PWMWL Output, PWM phase W high side gate signal, internally pulled down by $58k\Omega$ PWMWL Output, PWM phase W low side gate signal, internally pulled down by $58k\Omega$

Fault

GATEKILL Input, upon assertion, this negates all six PWM signals, active low, internally

pulled up by $70k\Omega$

4.3 Analog Interface Group

AVSS Analog power return, (analog internal 1.8V power is shared with VDDCAP)

IFBU+ Input, Operational amplifier positive input for single or U-phase leg shunt

resistor current sensing

IFBU- Input, Operational amplifier negative input for single or U-phase leg shunt

shunt resistor current sensing

IFBUO Output, Operational amplifier output for single or U-phase leg shunt shunt

resistor current sensing

IFBV+ Input, Operational amplifier positive input for V-phase leg shunt resistor

current sensing

IFBV- Input, Operational amplifier negative input for V-phase leg shunt shunt resistor

current sensing

IFBVO Output, Operational amplifier output for V-phase leg shunt shunt resistor

current sensing

AINO Input, Analog input channel 0 (0 – 1.2V), typically configured for DC bus

voltage input

AIN1 Input, Analog input channel 1 (0 – 1.2V), needs to be pulled down to AVSS if

unused

4.4 Power Interface Group

VDD1 Digital power (3.3V) AVDD Analog Power (1.8V)

VDDCAP Internal 1.8V output, requires capacitors to the pin. Shared with analog power

pad internally

Note: The internal 1.8V supply is not designed to power any external circuits

or devices. Only capacitors should be connected to this pin.

VSS Digital common

4.5 Test Interface Group

P5.2/TMS JTAG test mode input or input/output digital port

TDO JTAG data output

P5.1/TDI JTAG data input, or input/output digital port

TCK JTAG test clock

5 DC Characteristics

5.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Max	Condition
V_{DD1}	Supply Voltage	-0.3 V	-	3.6 V	Respect to VSS
V _{IA}	Analog Input Voltage	-0.3 V	-	1.98 V	Respect to AVSS
V_{ID}	Digital Input Voltage	-0.3 V	-	6.0 V	Respect to VSS
V_{PP}	OTP Programming	-0.3V	-	7.0V	Respect to VSS
	voltage				
T _A	Ambient Temperature	-40 °C	-	125 °C	
Ts	Storage Temperature	-65 °C	-	150 °C	

Table 1 Absolute Maximum Ratings

Caution: Stresses beyond those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and function of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied.

5.2 System Clock Frequency and Power Consumption

 $C_{AREF} = 1nF$, $C_{MEXT} = 100nF$. VDD1=3.3V, Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
SYSCLK	System Clock	32	-	128	MHz
P_D	Power consumption		160 ¹⁾	200	mW

Table 2 System Clock Frequency

Note 1) The value is based on the condition of MCE clock=126MHz, 8051 clock 31.5MHz with an actual motor running by a typical MCE application program and 8051 code.

Digital I/O DC Characteristics 5.3

Symbol	Parameter	Min	Тур	Max	Condition
V_{DD1}	Supply Voltage	3.0 V	3.3 V	3.6 V	Recommended
V _{PP}	OTP Programming voltage	6.70V	6.75V	6.80V	Recommended
V _{IL}	Input Low Voltage	-0.3 V	-	0.8 V	Recommended
V _{IH}	Input High Voltage	2.0 V		3.6 V	Recommended
C _{IN}	Input capacitance	-	3.6 pF	-	(1)
I _L	Input leakage current		±10 nA	±1 μA	$V_0 = 3.3 \text{ V or } 0 \text{ V}$
I _{OL2} ⁽²⁾	Low level output current	17.9 mA	26.3 mA	33.4 mA	$V_{OL} = 0.4 \text{ V}$
I _{OH2} ⁽²⁾	High level output current	24.6 mA	49.5 mA	81 mA	V _{OH} = 2.4 V

Table 3 Digital I/O DC Characteristics

Note:

- (1) Data guaranteed by design.
- (2) Applied to all digital I/O pins.

5.4 Analog I/O (IFBU+,IFBU-,IFBUO, IFBV+,IFBV-,IFBVO) DC Characteristics

 $C_{AREF} = 1nF$, $C_{MEXT} = 100nF$. VDD1=3.3V, Unless specified, Ta = 25 $^{\circ}$ C.

Symbol	Parameter	Min	Тур	Max	Condition
V _{AVDD}	AVDD voltage	1.71V	1.80V	1.89V	
V _{OFFSET}	Input Offset Voltage	-	-	26 mV	
V _I	Input Voltage Range	0 V		1.2 V	Recommended
V _{OUTSW}	OP amp output operating range	50 mV	-	1.7 V	
C _{IN}	Input capacitance	-	3.6 pF	-	(1)
R _{FDBK}	OP amp feedback resistor	5 kΩ	-	20 kΩ	Requested between IFBO and IFB-
OP GAINCL	Operating Close loop Gain	80 db	-	-	(1)
CMRR	Common Mode Rejection Ratio	-	80 db	-	(1)
I _{SRC}	Op amp output source current	-	1 mA	-	V _{OUT} = 0.6 V
I _{SNK}	Op amp output sink current	-	100 µA	-	V _{OUT} = 0.6 V

Table 4 Analog I/O DC Characteristics

Note:

(1) Data guaranteed by design.

5.5 Under Voltage Lockout DC characteristics

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
UV _{CC+}	UVcc positive going Threshold	2.78 V	3.04 V	3.23 V	(1)
UV _{CC} -	UVcc negative going Threshold	2.78 V	2.97 V	3.23 V	
UV _{CC} H	UVcc Hysteresys	-	73 mV	1	(1)

Table 5 UVcc DC Characteristics

Note:

(1) Data guaranteed by design.

5.6 Itrip comparator DC characteristics

Unless specified, VDD1=3.3V, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
Itrip ₊	Itrip positive going Threshold	-	1.22V	-	
Itrip.	Itrip negative going Threshold	-	1.10V	-	
ItripH	Itrip Hysteresys	-	120mV	-	

Table 6 Itrip DC Characteristics

6 AC Characteristics

6.1 Digital PLL AC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
F _{CLKIN}	Crystal input	3.2 MHz	4 MHz	60 MHz	(1)
	frequency				(see figure below)
F _{PLL}	Internal clock	32 MHz	50 MHz	128 MHz	(1)
	frequency				
F _{LWPW}	Sleep mode output	F _{CLKIN} ÷ 256	-	-	(1)
	frequency				
Js	Short time jitter	-	200 psec	-	(1)
D	Duty cycle	-	50 %	-	(1)
T _{LOCK}	PLL lock time	-	-	500 µsec	(1)

Table 7 PLL AC Characteristics

Note:

(1) Data guaranteed by design.

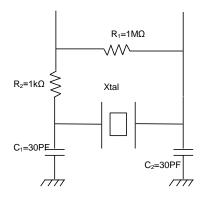


Figure 3 Crystal circuit example

6.2 Analog to Digital Converter AC Characteristics

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
T _{CONV}	Conversion time	-	-	2.05 µsec	(1)
T _{HOLD}	Sample/Hold maximum	-	-	10 µsec	Voltage droop ≤ 15
	hold time				LSB
					(see figure below)

Table 8 A/D Converter AC Characteristics

Note:

(1) Data guaranteed by design.

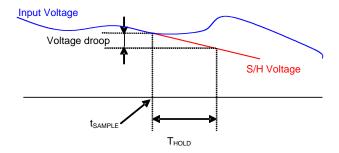


Figure 4 Voltage droop and S/H hold time

6.3 Op amp AC Characteristics

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
OP _{SR}	OP amp slew rate	-	10 V/µsec	-	VDD1 = 3.3 V, CL = 33 pF ⁽¹⁾
OP _{IMP}	OP input impedance	-	10 ⁸ Ω	-	(1) (2)
T _{SET}	Settling time	-	400 ns	-	VDD1 = 3.3 V, CL = 33 pF ⁽¹⁾

Table 9 Current Sensing OP Amp AC Characteristics

Note:

- (1) Data guaranteed by design.
- (2) To guarantee stability of the operational amplifier, it is recommended to load the output pin by a capacitor of 47pF, see Figure 5. Here only the single shunt current amplifier is show but all op amp outputs should be loaded with this capacitor.

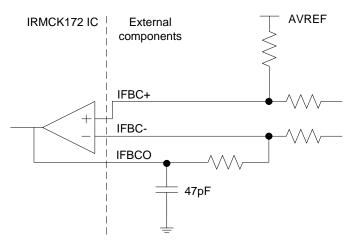


Figure 5 A capacitor of 47pF is recommended at the output pin of all op amps.

6.4 SYNC to SVPWM and A/D Conversion AC Timing

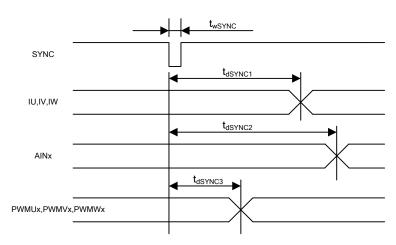


Figure 6 SYNC timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t _{wSYNC}	SYNC pulse width	-	32	-	SYSCLK
t _{dSYNC1}	SYNC to current feedback conversion time	-	-	100	SYSCLK
t _{dSYNC2}	SYNC to AIN0-5 analog input conversion time	-	-	200	SYSCLK (1)
t _{dSYNC3}	SYNC to PWM output delay time	-	-	2	SYSCLK

Table 10 SYNC AC Characteristics

Note:

(1) AIN1 channel is converted once every 6 SYNC events

6.5 GATEKILL to SVPWM AC Timing

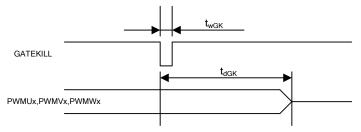


Figure 7 Gatekill timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t _{wGK}	GATEKILL pulse width	32	-	-	SYSCLK
t _{dGK}	GATEKILL to PWM	-	-	100	SYSCLK
	output delay				

Table 11 GATEKILL to SVPWM AC Timing

6.6 Itrip AC Timing

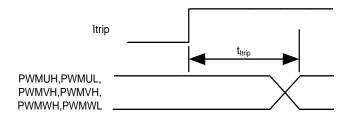


Figure 8 ITRIP timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t _{ITRIP}	Itrip propagation delay	-	-	100(sysclk)+1.0usec	SYSCLK+usec

Table 12 Itrip AC Timing

6.7 UART AC Timing

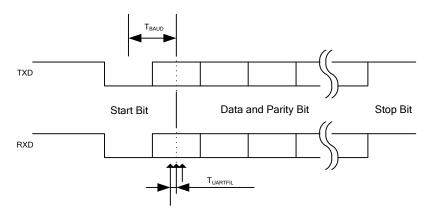


Figure 9 UART timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{BAUD}	Baud Rate Period	-	57600	-	bit/sec
T _{UARTFIL}	UART sampling filter period ⁽¹⁾	-	1/16	-	T _{BAUD}

Table 13 UART AC Timing

Note:

(1) Each bit including start and stop bit is sampled three times at center of a bit at an interval of 1/16 T_{BAUD} . If three sampled values do not agree, then UART noise error is generated.

6.8 Interrupt AC Timing

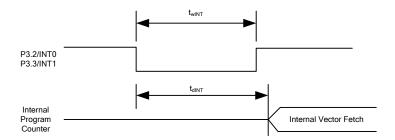


Figure 10. Interrupt timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t _{wiNT}	INTO, INT1 Interrupt Assertion Time	4	-	-	SYSCLK
t _{dINT}	INTO, INT1 latency	-	-	4	SYSCLK

Table 14. Interrupt AC Timing

6.9 JTAG AC Timing

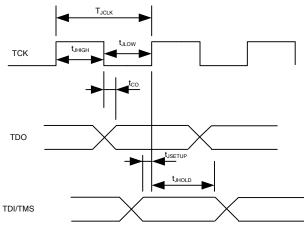


Figure 11 JTAG timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{JCLK}	TCK Period	-	-	50	MHz
t _{JHIGH}	TCK High Period	10	-	-	nsec
t _{JLOW}	TCK Low Period	10	-	-	nsec
t _{CO}	TCK to TDO propagation delay time	0	-	5	nsec
t _{JSETUP}	TDI/TMS setup time	4	-	-	nsec
t _{JHOLD}	TDI/TMS hold time	0	-	-	nsec

Table 15 JTAG AC Timing

7 I/O Structure

The following figure shows the motor PWM output (PWMUH/PWMUL/PWMVH/PWMWL/PWMWH/PWMWL)

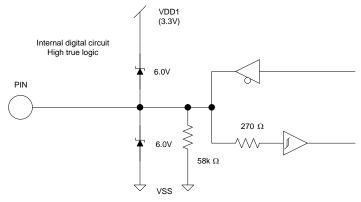


Figure 12 PWMUL/PWMVH/PWMVL/PWMWH output

The following figure shows the digital I/O structure except the motor PWM output

Figure 13 All digital I/O except motor PWM output

The following figure shows RESET and GATEKILL I/O structure.

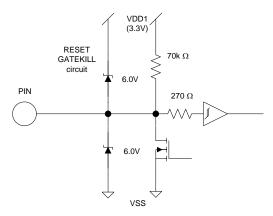


Figure 14 RESET, GATEKILL I/O

The following figure shows the analog input structure.

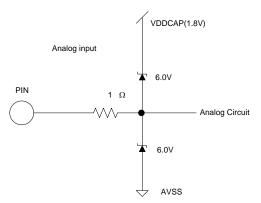


Figure 15 Analog input

The following figure shows all analog operational amplifier output pins and AREF pin I/O structure.

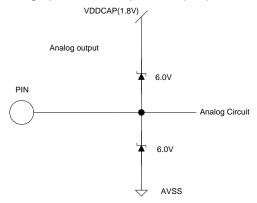


Figure 16 Analog operational amplifier output and AREF I/O structure

The following figure shows the VPP pin structure

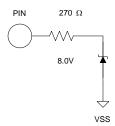


Figure 17 VPP programming pin I/O structure

The following figure shows the VSS and AVSS pins structure

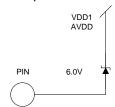


Figure 18 VSS and AVSS pin structure

The following figure shows the VDD1 and VDDCAP pin structure

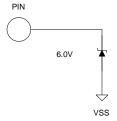


Figure 19 VDD1 and VDDCAP pin structure

The following figure shows the XTAL0 and XTAL1 pins structure

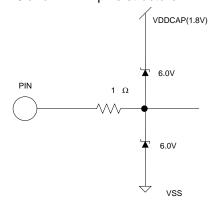
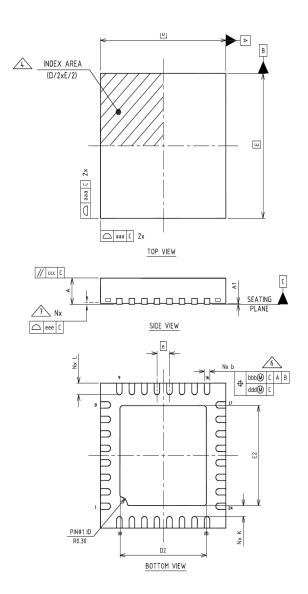


Figure 20 XTAL0/XTAL1 pins structure

8 Pin List

Pin		Internal	Pin	
Number	Pin Name	Pull-up	Туре	Description
		/Pull-down		-
1	P1.1/RXD		I/O	UART receiver input or Discrete programmable I/O
2	P1.2/TXD		I/O	UART transmitter output or Discrete programmable I/O
3	XTAL0			Crystal input
4	XTAL1		0	Crystal output
5	VDD1		Р	3.3V digital power
6	VSS		Р	Digital common
7	VDDCAP		Р	Internal 1.8V output, Capacitor(s) to be connected. To
				be connected to pin 19
8	P3.2/INT0		I/O	Discrete programmable I/O or Interrupt 0 input
9	P2.6/AOPWM0		I/O	Discrete programmable I/O or PWM 0 digital output
10	AIN0			Analog input channel 0, 0-1.2V range, needs to be
				pulled down to AVSS if unused
11	AIN1		I	Analog input channel 1, 0-1.2V range, needs to be
				pulled down to AVSS if unused
12	IFBU-		I	Single or U-phase leg shunt current sensing OP amp
				input (-)
13	IFBU+		I	Single or U-phase leg shunt current sensing OP amp
				input (+)
14	IFBUO		0	Single or U-phase leg shunt current sensing OP amp
				output
15	IFBV-		I	Single or V-phase leg shunt current sensing OP amp
				input (-)
16	IFBV+			Single or V-phase leg shunt current sensing OP amp
				input (+)
17	IFBVO		0	Single or V-phase leg shunt current sensing OP amp
40	1) (00		-	output
18	AVSS		Р	Analog ground
19	AVDD		P	Analog Power 1.8V
20	VDD1		Р	3.3V digital power
21	PWMWL	58 kΩ Pull	0	PWM gate drive for phase W low side, configurable
	D) 4 (4 4) (1	down		either high or low true.
22	PWMVL	58 kΩ Pull	0	PWM gate drive for phase V low side, configurable
	DIA/AALII	down		either high or low true
23	PWMUL	58 kΩ Pull	0	PWM gate drive for phase U low side, configurable
0.4	DIA/MA/LI	down		either high or low true
24	PWMWH	58 kΩ Pull	0	PWM gate drive for phase W high side, configurable
		down		either high or low true



Pin		Internal	Pin	
Number	Pin Name	Pull-up	Type	Description
		/Pull-down		
25	PWMVH	58 kΩ Pull	0	PWM gate drive for phase V high side, configurable
		down		either high or low true
26	PWMUH	58 kΩ Pull	0	PWM gate drive for phase U high side, configurable
		down		either high or low true
27	GATEKILL	70k kΩ Pull		PWM shutdown input
		up		
28	TMS/P5.2			JTAG test mode select or Discrete Input
29	TDO/P5.3		0	JTAG test data output or Discrete Output
30	TDI/P5.1		I	JTAG test data input or Discrete Input
31	TCK			JTAG test clock
32	RESET	70k kΩ Pull	I/O	Reset, low true, Schmitt trigger input
		up		

Table 16 Pin List

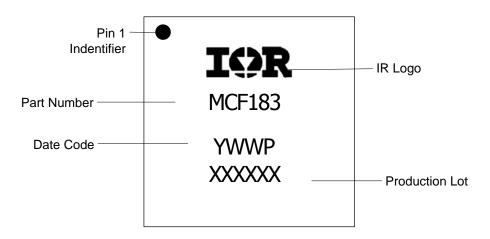
9 Package Dimensions

	Dimension Table						
Symbol A	W :	NOTE					
Mbol	MINIMUM	NOMINAL	MAXIMUM				
Α	0.70	0.75	0.80				
A1	0.00	0.02	0.05				
Ь	0.18	0.25	0.30	6			
D		5.00 BSC					
E		5.00 BSC					
e		0.50 BSC					
D2	3.30	3.45	3.55				
E2	3.30	3.45	3.55				
K	0.20						
L	0.30	0.40	0.50				
aaa		0.05					
bbb		0.10					
ССС		0.10					
ddd		0.05					
eee		0.08					
N		3					
ND		5					
NE		5					
NOTES							
LF PART NO.	437727						
LF DWG. NO.	CA	RSEM-062	57				
REV.		Α					

NOTE:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.

The location of the marked terminal #1 identifier is within the hatched area.


5. ND and NE refer to the number of terminals on D and E side repectively

6. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.

7. Coplanarity applies to the terminals and all other bottom surface metallization.

10 Part Marking Information

11 Qualification Information

Qualif	ication Level	Industrial (per JEDEC JESD47)
Moist	ure Sensitivity Level	MSL2 ^{†††} (per IPC/JEDEC J-STD-020)
	Machine Model	Class B (per JEDEC standard JESD22-A115)
ESD	Human Body Model	Class 2 (per ANSI/ESDA/JEDEC JS-001)
E3D	Charged Device Model	Class C2 (per JEDEC standard JESD22-C101)
	Latch-Up	Class I, Level B (per JEDEC standard JESD78)
RoHS	Compliant	Yes

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information