PD - 91737A

International **IGR** Rectifier **RADIATION HARDENED POWER MOSFET**

SURFACE MOUNT(SMD-3)

Product Summary

Part Number	Radiation Level	RDS(on)	lD
IRHNA7064	100K Rads (Si)	0.015Ω	75*A
IRHNA3064	300K Rads (Si)	0.015Ω	75*A
IRHNA4064	600K Rads (Si)	0.015Ω	75*A
IRHNA8064	1000K Rads (Si)	0.015Ω	75*A

International Rectifier's RADHard HEXFET[®] technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Absolute Maximum Ratings

IRHNB7064 60V, N-CHANNEL RAD Hard[™] HEXFET[®] TECHNOLOGY

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light Weight

Pre-Irradiation

	3		
	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	75*	
$I_D @ V_{GS} = 12V, T_C = 100^{\circ}C$	Continuous Drain Current	56	A
IDM	Pulsed Drain Current ①	300	
P _D @ T _C = 25°C	Max. Power Dissipation	300	W
	Linear Derating Factor	2.4	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	EAS Single Pulse Avalanche Energy 2		
IAR	Avalanche Current ①	75*	A
EAR	Repetitive Avalanche Energy ①	30	mJ
dv/dt	Peak Diode Recovery dv/dt 3	2.5	V/ns
Тј	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Package Mounting Surface Temperature	300 (for 5 sec.)	
	Weight	3.5 (Typical)	g

For footnotes refer to the last page *Current is limited by pin diameter

Pre-Irradiation

٦

	Parameter		Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	60	—	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
∆BV _{DSS} /∆TJ	Temperature Coefficient of Breakdown Voltage		0.056	—	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source On-State	_	—	0.015	Ω	VGS = 12V, ID = 56A (4)
	Resistance	_	—	0.018	52	VGS = 12V, ID = 75A
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 \text{mA}$
9fs	Forward Transconductance	18	—	_	S (Ŭ)	V _{DS} > 15V, I _{DS} = 56A ④
IDSS	Zero Gate Voltage Drain Current	_	—	25	μA	V _{DS} = 48V ,V _{GS} =0V
		—	—	250		V _{DS} = 48V,
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	_	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse		—	-100		VGS = -20V
Qg	Total Gate Charge		—	260		VGS =12V, ID = 75A
Qgs	Gate-to-Source Charge		—	60	nC	$V_{DS} = 30V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	—	86		
td(on)	Turn-On Delay Time	_	—	27		V _{DD} =30V, I _D = 75A
tr	Rise Time	—	—	120	ns	V_{GS} =12V, R_{G} = 2.35 Ω
td(off)	Turn-Off Delay Time		—	76	115	
tf	FallTime		—	93		
Ls+LD	Total Inductance	_	4.0	_	nH	Measured from the center of
						drain pad to center of source pad
Ciss	Input Capacitance		4900	_		$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance	_	2800	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	860	_	1	

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions	
IS	Continuous Source Current (Body Diode)		_	75*	Α		
ISM	Pulse Source Current (Body Diode) ①	—	—	356			
VSD	Diode Forward Voltage	—	—	3.0	V	Tj = 25°C, IS = 75A, VGS = 0V ④	
trr	Reverse Recovery Time		_	220	nS	Tj = 25°C, IF = 75A, di/dt ≤ 100A/μs	
QRR	Reverse Recovery Charge		—	3.1	μC	$V_{DD} \le 50V $ (4)	
ton	Forward Turn-On Time Intrinsic turn-on	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L_S + L_D .					

*Current is limited by the internal wire diameter

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case	—	—	0.42	°C/W	
R _{th} J-PCB	Junction-to-PC board	—	1.6	—		Soldered to a 1" sq. copper-clad board

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

Radiation Characteristics

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

	Parameter	100 K Ra	ads (Si)1	300-1000K Rads (Si)2		Units	Test Conditions
		Min Max Min Max					
BVDSS	Drain-to-Source Breakdown Voltage	60	_	60	_	V	V _{GS} = 12V, I _D = 1.0mA
VGS(th)	Gate Threshold Voltage	2.0	4.0	1.25	4.5	1	$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
IGSS	Gate-to-Source Leakage Forward	—	100	—	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	—	-100	—	-100		V _{GS} = -20 V
IDSS	Zero Gate Voltage Drain Current	—	25	—	50	μA	V _{DS} =48V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source ④	—	0.015	—	0.025	Ω	VGS = 12V, I _D =56A
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source ④	_	0.015	—	0.025	Ω	VGS = 12V, I _D =56A
()	On-State Resistance (SMD-3)						
V _{SD}	Diode Forward Voltage ④	—	3.0	—	3.0	V	V _{GS} = 0V, I _S = 75A

Table 1. Electrical Characteristics @ Tj = 25° C, Post Total Dose Irradiation 66

1. Part number IRHNB7064

2. Part numbers IRHNB8064, RHNB3064, and IRHNB4064

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

lon	lon LET MeV/(mg/cm²))					VDS(V)		
		/leV/(mg/cm²)) (MeV) (μm)	@VGS=0V	@VGS=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V	
I	59.9	345	32.8	60	60	45	40	30
Br	36.8	305	39	40	35	30	25	20

Table 2. Single Event Effect Safe Operating Area

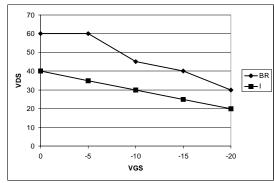


Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

Pre-Irradiation

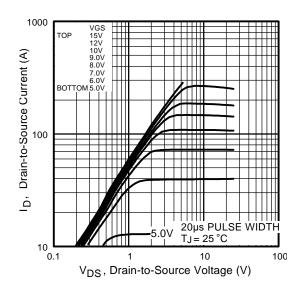


Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

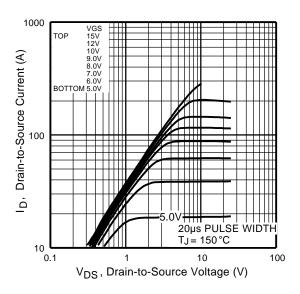


Fig 2. Typical Output Characteristics

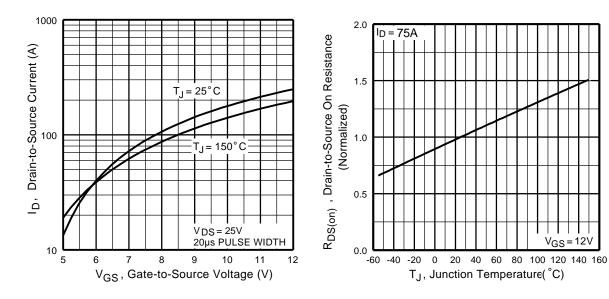


Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

4

Pre-Irradiation

IRHNB7064

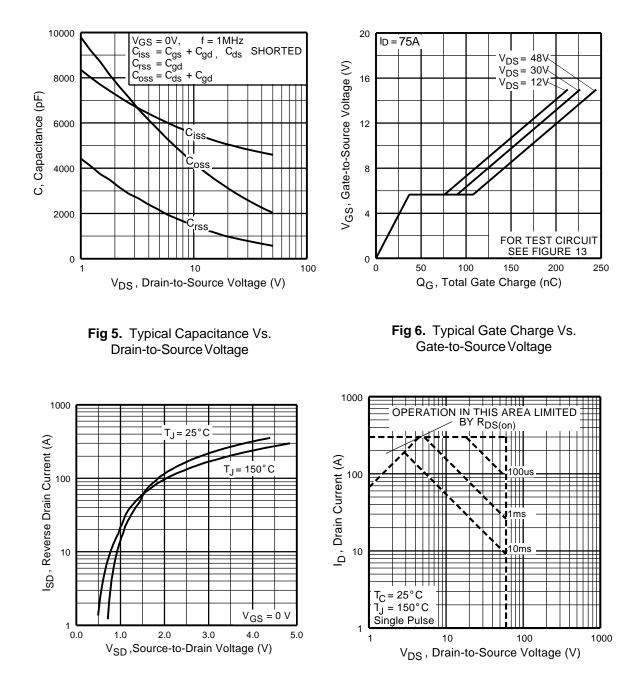
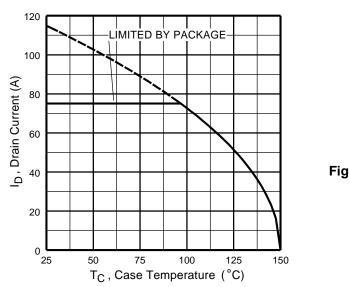



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

www.irf.com

Pre-Irradiation

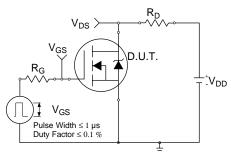


Fig 10a. Switching Time Test Circuit

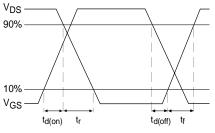


Fig 10b. Switching Time Waveforms

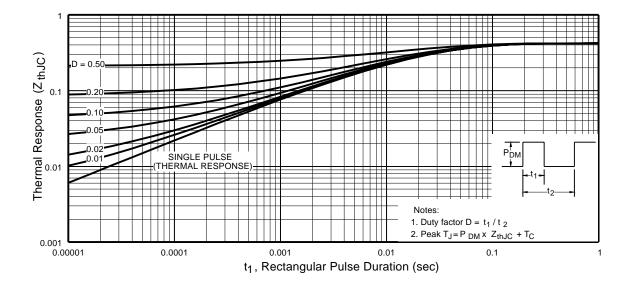


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Pre-Irradiation

IRHNB7064

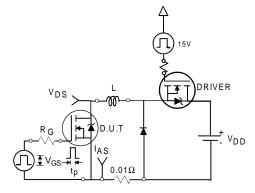


Fig 12a. Unclamped Inductive Test Circuit

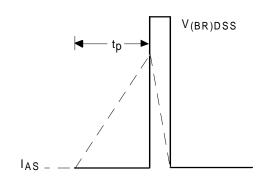
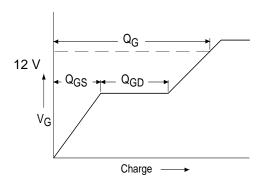



Fig 12b. Unclamped Inductive Waveforms

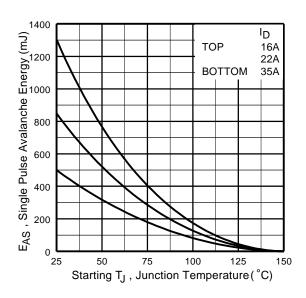
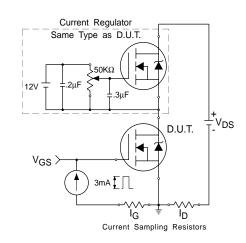
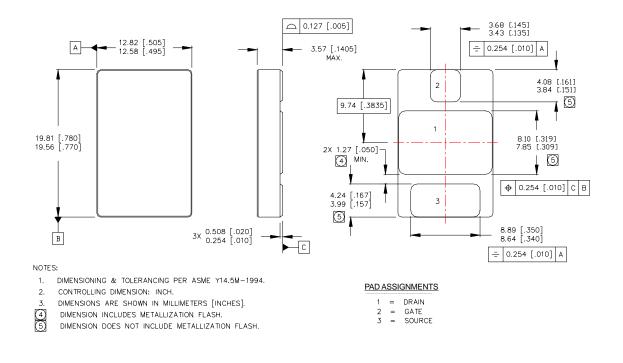



Fig 12c. Maximum Avalanche Energy Vs. Drain Current

7


Pre-Irradiation

Foot Notes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- \odot V_{DD} = 25V, starting T_J = 25°C, L=0.17mH Peak I_L = 75A, V_{GS} =12V

- ④ Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- Total Dose Irradiation with V_{GS} Bias.
 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- Total Dose Irradiation with V_{DS} Bias.
 48 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — SMD-3

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/01