
#### **Smart Lowside Power Switch**

#### HITFET® BSP 75N

#### **Data Sheet V1.0**

#### **Features**

- Logic Level Input
- Input protection (ESD)
- · Thermal shutdown with auto restart
- Overload protection
- Short circuit protection
- Overvoltage protection
- · Current limitation



#### **Application**

- All kinds of resistive, inductive and capacitive loads in switching applications
- $\mu C$  compatible power switch for 12 V and 24 V DC applications and for 42 Volt Powernet
- Replaces electromechanical relays and discrete circuits

#### **General Description**

N channel vertical power FET in Smart Power Technology. Fully protected by embedded protection functions.

| Туре            | Ordering Code | Package    |
|-----------------|---------------|------------|
| HITFET® BSP 75N | Q67060-S7215  | P-SOT223-4 |

## **Product Summary**

| Parameter                       | Symbol       | Value | Unit |
|---------------------------------|--------------|-------|------|
| Continuous drain source voltage | $V_{DS}$     | 60    | V    |
| On-state resistance             | $R_{DS(ON)}$ | 550   | mΩ   |
| Current limitation              | $I_{D(lim)}$ | 1     | А    |
| Nominal load current            | $I_{D(Nom)}$ | 0.7   | А    |
| Clamping energy                 | $E_{AS}$     | 550   | mJ   |



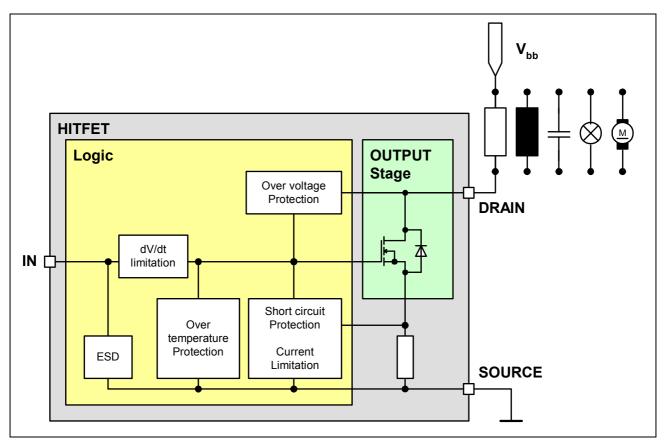



Figure 1 Block Diagram

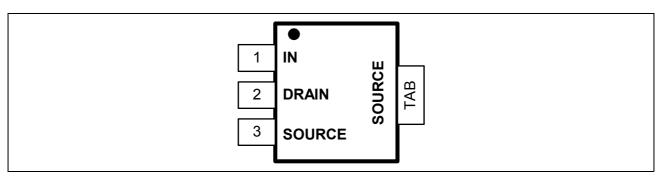



Figure 2 Pin Configuration

### **Pin Definitions and Functions**

| Pin No. | Symbol | Function                                            |
|---------|--------|-----------------------------------------------------|
| 1       | IN     | Input; activates output and supplies internal logic |
| 2       | DRAIN  | Output to the load                                  |
| 3 + TAB | SOURCE | Ground; pin3 and TAB are internally connected       |



#### **Circuit Description**

The BSP 75N is a monolithic power switch in Smart Power Technology (SPT) with a logic level input, an open drain DMOS output stage and integrated protection functions. It is designed for all kind of resistive and inductive loads (relays, solenoid) in automotive and industrial applications.

#### **Protection Functions**

- Over voltage protection: An internal clamp limits the output voltage at  $V_{\rm DS(AZ)}$  (min. 60V) when inductive loads are switched off.
- Current limitation: By means of an internal current measurement the drain current is limited at I<sub>D(lim)</sub> (1.4 1.5 A typ.). If the current limitation is active the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. This operation leads to an increasing junction temperature until the over temperature threshold is reached.
- Over temperature and short circuit protection: This protection is based on sensing the chip temperature. The location of the sensor ensures a fast and accurate junction temperature detection. Over temperature shutdown occurs at minimum 150 °C. A hysteresis of typ. 10 K enables an automatic restart by cooling.

The device is ESD protected according Human Body Model (4 kV) and load dump protected (see Maximum Ratings).



## **Absolute Maximum Ratings**

 $T_{\rm j}$  = 25 °C, unless otherwise specified

| Parameter                                                                                                                                       | Symbol                  | Values                                      | Unit | Remarks                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------|
| Continuous drain source voltage 1)                                                                                                              | $V_{DS}$                | 60                                          | V    | _                                                                                                                            |
| Drain source voltage for short circuit protection                                                                                               | $V_{DS}$                | 36                                          | V    | _                                                                                                                            |
| Continuous input voltage                                                                                                                        | $V_{IN}$                | -0.2 +10                                    | V    | _                                                                                                                            |
| Peak input voltage                                                                                                                              | $V_{IN}$                | -0.2 +20                                    | V    | _                                                                                                                            |
| Continuous Input Current $ -0.2 \text{V} \leq V_{\text{IN}} \leq 10 \text{V} \\ V_{\text{IN}} < -0.2 \text{V or } V_{\text{IN}} > 10 \text{V} $ | $I_{IN}$                | no limit<br>  <i>I</i> <sub>IN</sub>  ≤ 2mA | mA   | _                                                                                                                            |
| Operating temperature range<br>Storage temperature range                                                                                        | $T_{ m j} \ T_{ m stg}$ | -40 +150<br>-55 +150                        |      | _                                                                                                                            |
| Power dissipation (DC)                                                                                                                          | $P_{tot}$               | 1.8                                         | W    | _                                                                                                                            |
| Unclamped single pulse inductive energy                                                                                                         | $E_{AS}$                | 550                                         | mJ   | $I_{\rm D(ISO)} = 0.7 \text{ A};$<br>$V_{\rm bb} = 32 \text{V}$                                                              |
| Load dump protection <sup>2)</sup> $IN = low or high (8 V); R_{L} = 50 \Omega$ $IN = high (8 V); R_{L} = 22 \Omega$                             | $V_{LoadDump}$          | 80<br>47                                    | V    | $V_{ m LoadDump} = \ V_{ m P} + V_{ m S}; \ V_{ m P} = 13.5 \  m V \ R_{ m I}^{(3)} = 2 \ \Omega; \ t_{ m d} = 400 \  m ms;$ |
| Electrostatic discharge voltage (Human<br>Body Model)<br>according to MIL STD 883D, method<br>3015.7 and EOS/ESD assn. standard<br>S5.1 - 1993  | $V_{ESD}$               | 4000                                        | V    | _                                                                                                                            |
| DIN humidity category, DIN 40 040                                                                                                               | _                       | Е                                           | _    | _                                                                                                                            |
| IEC climatic category, DIN IEC 68-1                                                                                                             | _                       | 40/150/56                                   | _    | _                                                                                                                            |

### **Thermal Resistance**

| Junction soldering point         | $R_{thJS}$ | ≤ 10 | K/W | _ |
|----------------------------------|------------|------|-----|---|
| Junction - ambient <sup>4)</sup> | $R_{thJA}$ | ≤ 70 | K/W | _ |

<sup>1)</sup> See also Figure 7 and Figure 10.

Data Sheet V1.0 4 2003-01-10

 $<sup>^{2)}</sup>$   $V_{\rm LoadDump}$  is setup without DUT connected to the generator per ISO 7637-1 and DIN 40 839. See also page 7.

 $<sup>^{3)}</sup>$   $R_1$  = internal resistance of the load dump test pulse generator LD200.

<sup>&</sup>lt;sup>4)</sup> Device on epoxy pcb 40 mm  $\times$  40 mm  $\times$  1.5 mm with 6 cm<sup>2</sup> copper area for pin 4 connection.



#### **Electrical Characteristics**

 $T_{\rm j}$  = 25 °C, unless otherwise specified

| Parameter | Sym- | Limit Values |      | Unit | <b>Test Conditions</b> |  |
|-----------|------|--------------|------|------|------------------------|--|
|           | bol  | min.         | typ. | max. |                        |  |

### **Static Characteristics**

| $V_{DS(AZ)}$     | 60                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75                                                    | V                                                     | $I_{\rm D}$ = 10 mA,                                                                                                                                                                   |
|------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $T_{\rm j}$ = -40 +150 °C                                                                                                                                                              |
| $I_{DSS}$        | _                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                     | μΑ                                                    | $V_{IN} = 0 V,$                                                                                                                                                                        |
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $V_{\rm DS}$ = 32 V,                                                                                                                                                                   |
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $T_{\rm j}$ = -40 +150 °C                                                                                                                                                              |
| $V_{IN(th)}$     | 1                            | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                   | V                                                     | $I_{\rm D}$ = 10 mA                                                                                                                                                                    |
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | μΑ                                                    | $V_{IN}$ = 5 V                                                                                                                                                                         |
| $I_{IN(1)}$      | _                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                   |                                                       |                                                                                                                                                                                        |
| $I_{IN(2)}$      | _                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                   |                                                       |                                                                                                                                                                                        |
| $I_{IN(3)}$      | 1000                         | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                                                  |                                                       |                                                                                                                                                                                        |
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | mΩ                                                    | $I_{\rm D} = 0.7 \text{ A},$                                                                                                                                                           |
| 20(011)          | _                            | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 675                                                   |                                                       | $V_{\text{IN}} = 5 \text{ V}$                                                                                                                                                          |
|                  | _                            | 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1350                                                  |                                                       |                                                                                                                                                                                        |
| $R_{\rm DS(on)}$ |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | mΩ                                                    | $I_{\rm D} = 0.7  \text{A},$                                                                                                                                                           |
| 20(01.)          | _                            | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 550                                                   |                                                       | $V_{\text{IN}} = 10 \text{ V}$                                                                                                                                                         |
|                  | _                            | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                                  |                                                       |                                                                                                                                                                                        |
| $I_{D(Nom)}$     | 0.7                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                     | Α                                                     | $V_{\rm BB}$ = 12 V,                                                                                                                                                                   |
| 2 ( )            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $V_{\rm DS} = 0.5  \rm V,$                                                                                                                                                             |
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $T_{\rm S}$ = 85 °C,                                                                                                                                                                   |
|                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $T_{\rm j}$ < 150 °C                                                                                                                                                                   |
| $I_{D(lim)}$     | 1                            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                                                   | Α                                                     | $V_{IN} = 10 \text{ V},$                                                                                                                                                               |
| _ ()             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | $V_{\rm DS}$ = 12 V                                                                                                                                                                    |
|                  | $I_{ m DSS}$ $V_{ m IN(th)}$ | $I_{\rm DSS}$ - $I_{\rm IN(th)}$ 1 $I_{\rm IN(1)}$ - $I_{\rm IN(2)}$ 1000 $I_{\rm IN(3)}$ 1 - $I_{\rm IN(3)}$ 1 $I_{\rm IN($ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $I_{\rm DSS}$ 5 μA $I_{\rm IN(th)}$ 1 1.8 2.5 V $I_{\rm IN(1)}$ - 100 200 400 1500 2000 $I_{\rm IN(3)}$ - 490 675 850 1350 $I_{\rm IN(3)}$ - 430 550 750 1000 $I_{\rm D(Nom)}$ 0.7 - A |

# Dynamic Characteristics 1)

| Turn-on time  | $V_{IN}$ to 90% $I_{D}$ : | t <sub>on</sub> | _ | 10 | 20 | μs | $R_{\rm L}$ = 22 $\Omega$ ,<br>$V_{\rm IN}$ = 0 to 10 V,<br>$V_{\rm BB}$ = 12 V                                         |
|---------------|---------------------------|-----------------|---|----|----|----|-------------------------------------------------------------------------------------------------------------------------|
| Turn-off time | $V_{IN}$ to 10% $I_{D}$ : | $t_{ m off}$    | _ | 10 | 20 | μs | $\begin{split} R_{\rm L} &= 22~\Omega, \\ V_{\rm IN} &= 10~{\rm to}~0~{\rm V}, \\ V_{\rm BB} &= 12~{\rm V} \end{split}$ |



## Electrical Characteristics (cont'd)

 $T_{\rm i}$  = 25 °C, unless otherwise specified

| Parameter     |                               | Sym-                                                       | Limit Values |      |      | Unit     | <b>Test Conditions</b>                                                          |
|---------------|-------------------------------|------------------------------------------------------------|--------------|------|------|----------|---------------------------------------------------------------------------------|
|               |                               | bol                                                        | min.         | typ. | max. |          |                                                                                 |
| Slew rate on  | 70 to 50% $V_{\mathrm{BB}}$ : | $\frac{-\mathrm{d}V_\mathrm{DS}}{\mathrm{d}t_\mathrm{on}}$ | _            | 5    | 10   | V/<br>μs | $R_{\rm L}$ = 22 $\Omega$ ,<br>$V_{\rm IN}$ = 0 to 10 V,<br>$V_{\rm BB}$ = 12 V |
| Slew rate off | 50 to 70% $V_{\mathrm{BB}}$ : | $\frac{\mathrm{d}V_\mathrm{DS}}{\mathrm{d}t_\mathrm{off}}$ | _            | 10   | 15   | V/<br>μs | $R_{\rm L}$ = 22 $\Omega$ ,<br>$V_{\rm IN}$ = 10 to 0 V,<br>$V_{\rm BB}$ = 12 V |

## **Protection Functions<sup>2)</sup>**

| Thermal overload trip temperature | p                                                       | $T_{\rm jt}$        | 150        | 165    | 180 | °C | _                                                                             |
|-----------------------------------|---------------------------------------------------------|---------------------|------------|--------|-----|----|-------------------------------------------------------------------------------|
| Thermal hysteresis                |                                                         | $\Delta T_{\rm jt}$ | _          | 10     | _   | K  | _                                                                             |
| Unclamped single puenergy         | ulse inductive $T_{\rm j}$ = 25 °C $T_{\rm j}$ = 150 °C | $E_{AS}$            | 550<br>200 | _<br>_ |     | mJ | $I_{\mathrm{D(ISO)}} = 0.7 \mathrm{\ A},$ $V_{\mathrm{BB}} = 32 \mathrm{\ V}$ |

#### **Inverse Diode**

|                                 |          |   |   |   |   | _                                    |
|---------------------------------|----------|---|---|---|---|--------------------------------------|
| Continuous source drain voltage | $V_{SD}$ | _ | 1 | _ | V | $V_{IN} = 0 V,$                      |
|                                 |          |   |   |   |   | $-I_{\rm D} = 2 \times 0.7  {\rm A}$ |

<sup>1)</sup> See also **Figure 9**.

Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous, repetitive operation.



## **EMC-Characteristics**

The following EMC-Characteristics outline the behavior of typical devices. They are not part of any production test.

Table 1 Test Conditions

| Parameter      | Symbol                      | Value  | Unit   | Remark                                             |  |  |
|----------------|-----------------------------|--------|--------|----------------------------------------------------|--|--|
| Temperature    | T <sub>A</sub>              | 23 ±5  | °C     | _                                                  |  |  |
| Supply Voltage | V <sub>S</sub>              | 13.5   | V      | _                                                  |  |  |
| Load           | $R_{L}$                     | 27     | Ω      | ohmic                                              |  |  |
| Operation mode | PWM<br>DC                   | _<br>_ | _<br>_ | f <sub>INx</sub> =100Hz, <i>D</i> =0.5<br>ON / OFF |  |  |
| DUT specific   | V <sub>IN</sub> ('HIGH')=5V |        |        |                                                    |  |  |

#### **Fast electrical transients**

acc. to ISO 7637

| Test <sup>1)</sup><br>Pulse | Max.<br>Test<br>Level | Test Result |        | Pulse Cycle Time        |
|-----------------------------|-----------------------|-------------|--------|-------------------------|
|                             |                       | ON          | OFF    | and Generator Impedance |
| 1                           | -200V                 | С           | С      | 500ms ; $10Ω$           |
| 2                           | +200V                 | С           | С      | 500ms ; $10Ω$           |
| 3a                          | -200V                 | С           | С      | 100ms ; 50 $Ω$          |
| 3b                          | +200V                 | С           | С      | 100ms ; 50Ω             |
| 4                           | -7V                   | С           | С      | 0.01Ω                   |
| 5                           | 175V                  | E(65V)      | E(75V) | 400ms ; 2Ω              |

 $<sup>^{1)}</sup>$  The test pulses are applied at  $V_{\rm S}$ 

#### **Definition of functional status**

| Class | Content                                                                                                                                                                                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С     | All functions of the device are performed as designed after exposure to disturbance.                                                                                                                               |
| E     | One or more function of a device does not perform as designed after exposure and can not be returned to proper operation without repairing or replacing the device. The value after the character shows the limit. |



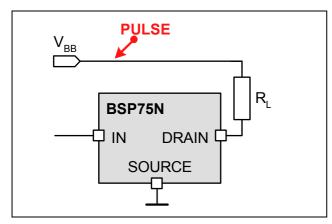
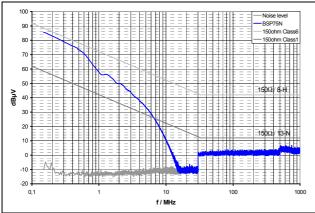




Figure 3 Test circuit for ISO pulse

#### **Conducted Emissions**

Acc. IEC 61967-4 ( $1\Omega/150\Omega$  method)

# Typ. $V_{bb}$ Emissions at PWM-mode with 150 $\Omega$ -matching network



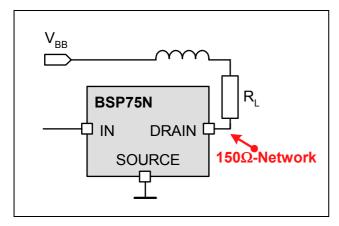
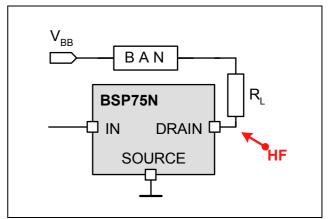



Figure 4 Test circuit for conducted emission 1)

#### **Conducted Susceptibility**


Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection)

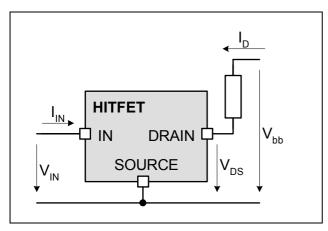
**Direct Power Injection:** Forward Power CW

**Failure Criteria:** Amplitude or frequency variation max. 10% at OUT

# Typ. $V_{bb}$ Susceptibility at DC-ON/OFF and at PWM






Test circuit for conducted susceptibility

For defined de coupling and high reproducibility a defined choke ( $5\mu H$  at 1MHz) is inserted in the Vbb-Line.

Broadband Artificial Network (short: BAN) consists of the same choke (5μH at 1MHz) and the same 150 Ohm-matching network as for emission measurement for defined de coupling and high reproducibility.



# **Block diagram**



UC V<sub>cc</sub>

Px.1 IN D

SOURCE

Figure 8 Application Circuit

Figure 5 Terms

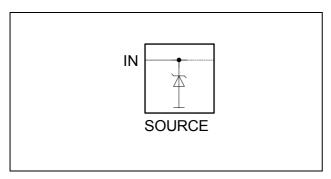



Figure 6 Input Circuit (ESD protection)

ESD zener diodes are not designed for DC current.

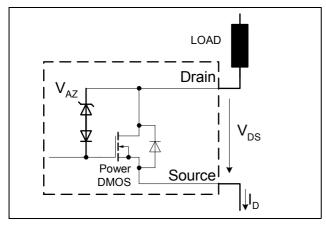



Figure 7 Inductive and Over voltage Output Clamp



# **Timing diagrams**

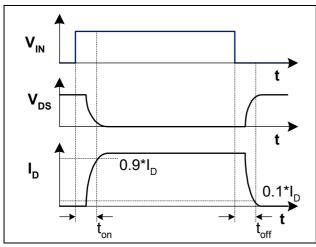



Figure 9 Switching a Resistive Load

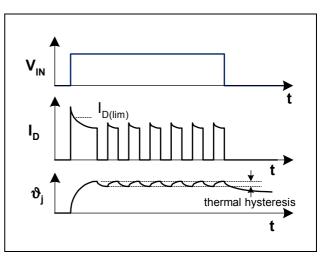
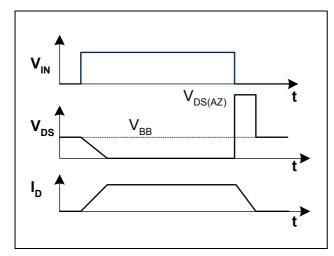
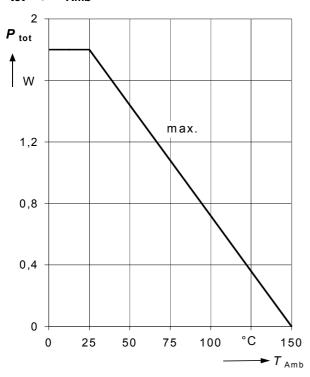
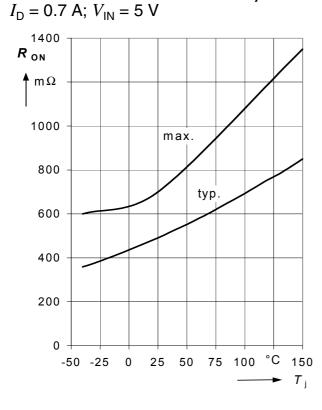


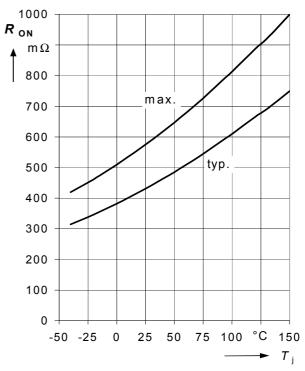

Figure 11 Short circuit



Figure 10 Switching an Inducitve Load

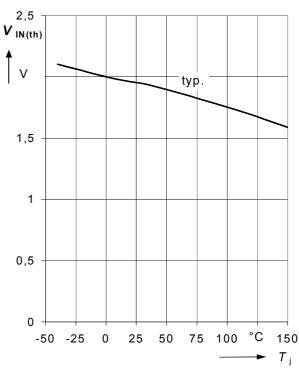


# 1 Max. allowable power dissipation $P_{\text{tot}} = f(T_{\text{Amb}})$



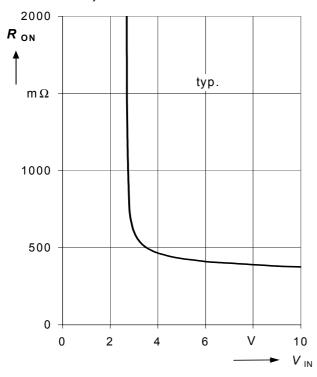

# 3 On-state resistance $R_{ON} = f(T_j)$ ;



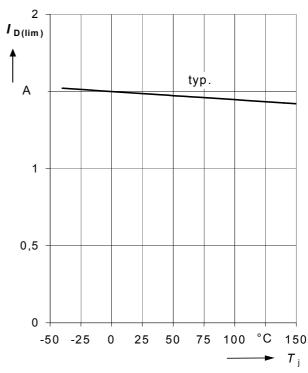

## 2 On-state resistance $R_{ON} = f(T_j)$ ;

$$I_{\rm D}$$
 = 0.7 A;  $V_{\rm IN}$  = 10 V

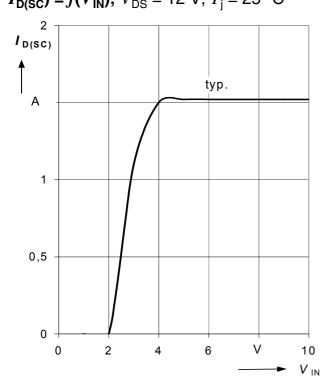



### 4 Typ. input threshold voltage

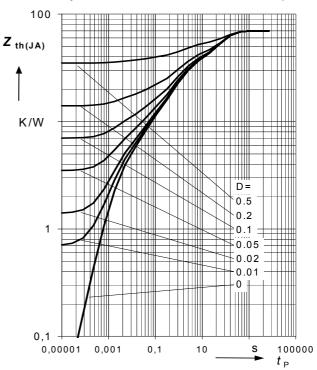
$$V_{\text{IN(th)}}$$
 =  $f(T_{\text{j}})$ ;  $I_{\text{D}}$  = 10 mA;  $V_{\text{DS}}$  = 12 V





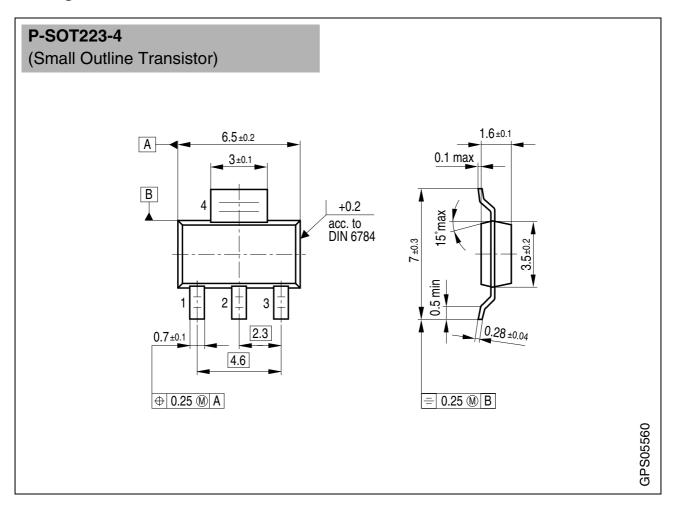


# 5 Typ. on-state resistance $R_{\rm ON}$ = $f(V_{\rm IN})$ ; $I_{\rm D}$ = 0.7 A; $T_{\rm i}$ = 25 °C




# 6 Typ. current limitation $I_{\rm D(lim)}$ = $f({\rm T_j})$ ; $V_{\rm DS}$ = 12 V, $V_{\rm IN}$ = 10 V



# 7 Typ. short circuit current $I_{D(SC)} = f(V_{IN})$ ; $V_{DS} = 12 \text{ V}$ , $T_{j} = 25 ^{\circ}\text{C}$




8 Max. transient thermal impedance  $Z_{thJA} = f(t_p)$  @ 6cm<sup>2</sup>; Parameter: D =  $t_p/T$ 





## **Package Outlines**



#### **Sorts of Packing**

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm



Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 76,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.

#### Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are in-tended to be implanted in the human body, or to support and/ or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.