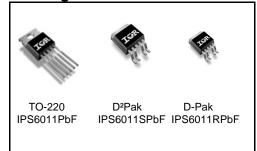


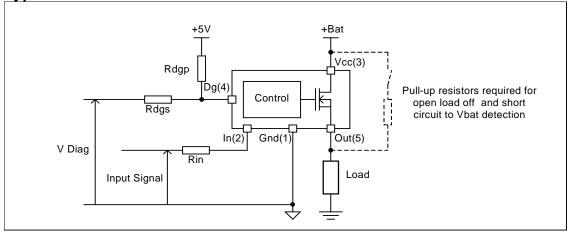
INTELLIGENT POWER HIGH SIDE SWITCH

Features

- Over temperature shutdown (with auto-restart)
- Short circuit protection (current limit)
- Reverse battery protection (turns On the MOSFET)
- Full diagnostic capability (short circuit to battery)
- Active clamp
- Open load detection in On and Off state
- Ground loss protection
- Logic ground isolated from power ground
- ESD protection


Description

The IPS6011(S)(R)PbF is a five terminal Intelligent Power Switch (IPS) for use in a high side configuration. It features short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The output current is limited to the Ilim value. The current limitation is activated until the thermal protection acts. The over-temperature protection turns off the device if the junction temperature exceeds the Tshutdown value. It will automatically restart after the junction has cooled 7°C below the Tshutdown value. The reverse battery protection turns On the MOSFET. A diagnostic pin provides different voltage levels for each fault condition. The double level shifter circuitry will allow large offsets between the logic and load ground.


Product Summary

 $\begin{array}{ll} \text{Rds(on)} & 14\text{m}\Omega \text{ max.} \\ \text{Vclamp} & 39\text{V} \\ \text{I Limit} & 60\text{A} \\ \text{Open load} & 3\text{V} \, / \, 2.4\text{A} \end{array}$

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units		
Vout	Maximum output voltage	Vcc-35	Vcc+0.3			
Voffset	Maximum logic ground to load ground offset	Vcc-35	Vcc+0.3			
Vin	Maximum input voltage	-0.3	5.5	V		
Vcc max.	Maximum Vcc voltage		36	V		
Vcc cont.	Maximum continuous Vcc voltage	_	28			
Vcc sc.	Maximum Vcc voltage with short circuit protection	_	24			
lin max.	Maximum IN current	-3	10	mA		
ldg max.	Maximum diagnostic output current	-3	10	ША		
Vdg	Maximum diagnostic output voltage	-0.3	5.5	V		
	Maximum power dissipation (internally limited by thermal protection)					
Pd	Rth=5°C/W IPS6011	_	25	W		
Fu	Rth=40°C/W IPS6011S 1"sqrt. footprint	_	3.1	VV		
	Rth=50°C/W IPS6011R 1"sqrt. footprint	_	2.5			
	Electrostatic discharge voltage (Human body) C=100pF, R=1500Ω					
	Between In and Vcc		1500			
ESD	Other combinations	_	4000	V		
E3D	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω,L=10μH			V		
	Between In and Vcc		100	-		
	Other combinations	_	500			
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C		
Tsoldering	Soldering temperature (10 seconds)	_	300	°C		

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS6011 TO220 free air	50	_	
Rth2	Thermal resistance junction to case IPS6011 TO220	1.2	_	
Rth1	Thermal resistance junction to ambient IPS6011S D2Pak std. footprint	60	_	
Rth2	Thermal resistance junction to ambient IPS6011S D2Pak 1" sqrt. footprint	40	_	°C/W
Rth3	Thermal resistance junction to case IPS6011S D ² Pak	1.2	_	C/VV
Rth1	Thermal resistance junction to ambient IPS6011R D-Pak std. footprint	70	_	
Rth2	Thermal resistance junction to ambient IPS6011R D-Pak 1" sqrt. footprint	50	_	
Rth3	Thermal resistance junction to case IPS6011R D-Pak	1.2	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4	5.5	
VIL	Low level input voltage	0	0.9	
lout	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V			
	Rth=5°C/W IPS6011	_	18	Α
	Rth=40°C/W IPS6011S 1" sqrt. footprint	_	6.3	
	Rth=50°C/W IPS6011R 1" sqrt. footprint	_	5.6	
Rin	Recommended resistor in series with IN pin	4	10	
Rdgs	Recommended resistor in series with DG pin for reverse battery protection	4	20	kΩ
Rdgp	Recommended pull-up resistor for DG	4	20	K52
Rol	Recommended pull-up resistor for open load detection	5	100	
F max.	Max. switching frequency	_	0.3	kHz

Static Electrical Characteristics

Tj=25°C, Vcc=14V (unless otherwise specified)

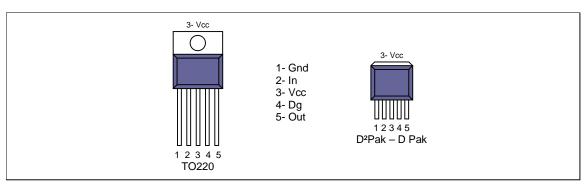
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	_	11	14		Vin=5V, Iout=20A
	ON state resistance Tj=150°C	_	19.5	25	m0	Vin=5V, Iout=20A
	ON state resistance Tj=25°C, Vcc=6V	_	12	17	mΩ	Vin=5V, Iout=20A
	ON state resistance during reverse battery	_	15	20		Vcc-Gnd=14V
Vcc op.	Operating voltage range with short circuit protection	6	_	24	.,	
V clamp 1	Vcc to Out clamp voltage 1	37	39	_	V	lout=50mA
V clamp 2	Vcc to Out clamp voltage 2	_	40	42		lout=16A (see Fig. 1)
Icc Off	Supply current when Off	_	4	9	μΑ	Vin=0V, Vout=0V
Icc On	Supply current when On	_	2.2	5	mA	Vin=5V
Vih	Input high threshold voltage	_	2.5	2.9		
Vil	Input low threshold voltage	1.5	2	_	V	
In hyst.	Input hysteresis	0.2	0.5	1		
lin On	Input current when device is On	_	40	100		Vin=5V
ldg	Dg leakage current	_	0.1	10	μΑ	Vdg=5V
Vdg	Low level DG voltage		0.25	0.4	V	ldg=1.6mA

Switching Electrical Characteristics Vcc=14V, Resistive load=1Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time	_	30	60		
Tr1	Rise time to Vout=Vcc-5V	_	25	50	μs	
Tr2	Rise time to Vout=0.9 x Vcc	_	40	100		
dV/dt (On)	Turn On dV/dt	_	0.3	0.8	V/µs	
EOn	Turn On energy	_	4	_	mJ	see Fig. 3
Tdoff	Turn-off delay time	_	70	140	110	
Tf	Fall time to Vout=0.1 x Vcc	_	30	80	μs	
dV/dt (Off)	Turn Off dV/dt		0.7	2	V/µs	
EOff	Turn Off energy	_	1.5	_	mJ	

Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
llim	Internal current limit	35	60	85	Α	Vout=0V
Tsd+	Over temperature high threshold	150(1)	165	_	°C	See fig. 2
Tsd-	Over temperature low threshold	_	158	_		See lig. 2
Vsc	Short-circuit detection voltage(2)	2	3	4		
UV+	High undervoltage lockout	_	5	5.9		
UV-	Low undervoltage lockout	3.2	4.4	5.8	V	
VOL Off	Open load detection threshold	2	3	4		
I OL On	Open load detection threshold	0.5	1.6	2.4	Α	

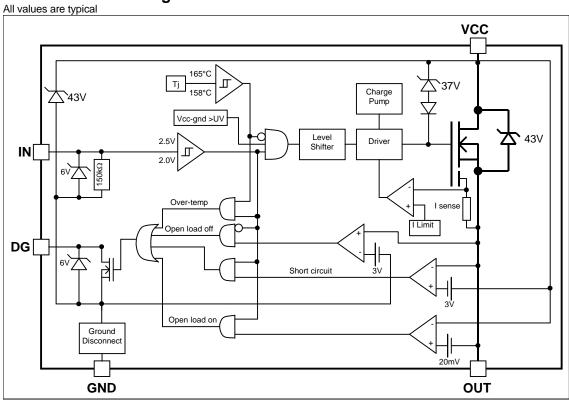

⁽¹⁾ Guaranteed by design

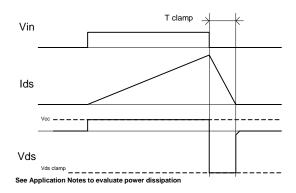
True Table

Operating Conditions	IN	OUT	DG
Normal	Н	Н	Н
Normal	L	L	Н
Open Load	Н	Н	L
Open Load (3)	L	Н	L
Short circuit to Gnd	Н	L	L
Short circuit to Gnd	L	L	Н
Short circuit to Vcc	Н	Н	L (4)
Short circuit to Vcc (5)	L	Н	L
Over-temperature	Н	Ĺ	Ĺ
Over-temperature	L	L	Н

⁽³⁾ With a pull-up resistor connected between the output and Vcc.

Lead Assignments


⁽²⁾ Reference to Vcc


⁽⁴⁾ Vds lower than 10mV.

⁽⁵⁾ Without a pull-up resistor connected between the output and Vcc.

Functional Block Diagram

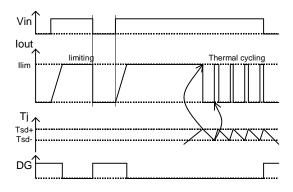
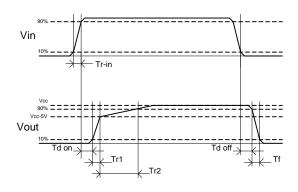



Figure 1 - Active clamp waveforms

Figure 2 - Protection timing diagram

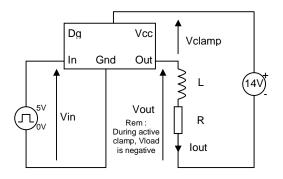


Figure 3 - Switching times definitions

Figure 4 - Active clamp test circuit

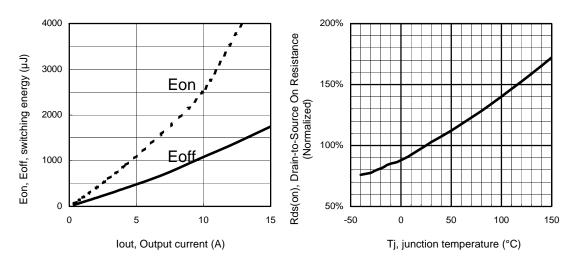


Figure 5 – Switching energy (µJ) Vs Output current (A)

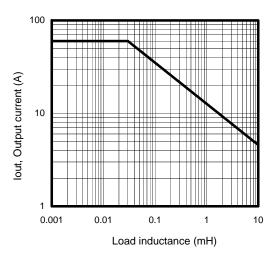


Figure 7 – Max. Output current (A) Vs Load inductance (mH)

Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

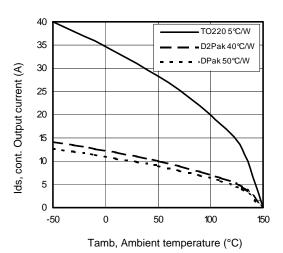
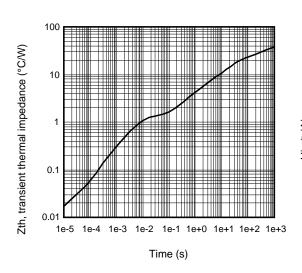



Figure 8 – Max. ouput current (A) Vs Ambient temperature (°C)

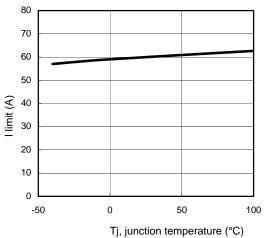
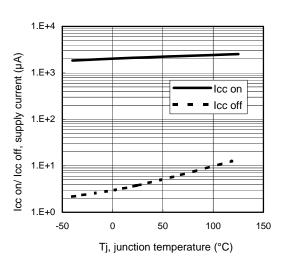
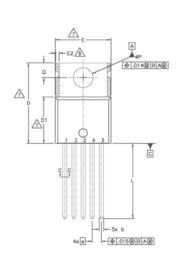
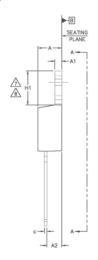


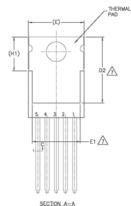
Figure 9 – Transient thermal impedance (°C/W) Vs time (s)

1.E+4 Icc on/ Icc off, supply current (µA) 1.E+3 Icc on Icc off 1.E+2 1.E+1 1.E+0 0 5 10 15 20 25 30 Vcc, power supply voltage (V)

Figure 11 - Icc on/ Icc off (µA) Vs Vcc (V)

Figure 10 –I limit (A)
Vs junction temperature (°C)


Figure 12 – Icc on/ Icc off (µA) Vs Tj (°C)

Case Outline - TO220 (5 lead) - Automotive Q100 PbF qualified

SYMBOL		DIMENSIONS						
B	MILLIM	ETERS	INC	HES	NOT-EN			
ľ	MIN.	MAX.	MIN.	MAX.	S			
Α	3.56	4.83	.140	.190				
A1	0.51	1.40	.020	.055				
A2	2.03	2.92	.080	.115				
ь	0.64	0.89	.025	.035				
b1	0.64	0.84	.025	.033	5			
c	0.36	0.61	.014	.024				
c1	0.36	0.56	.014	.022	5			
D	14.22	16.51	.560	.650	4			
D1	8.38	9.02	.330	.355				
D2	11.68	12.88	.460	.507	7			
E	9.65	10.67	.380	.420	4,7			
E1	6.86	8.89	.270	.350	7			
E2	-	0.76	_	.030	8			
e	1.70 BSC		.067	BSC				
H1	5.84	6.86	.230	.270	7,8			
L	12.70	14.73	.500	.580				
₫P	3.53	3.73	.139	.147				
Q	2.54	3.05	.100	.120				

PLATING -	b	BASE
(c)		e1 S
		<u></u>

- NOTES:

 DIMENSIONING AND TOLERANDING AS PER ASME Y14.5 M- 1994.

 DIMENSIONS ARE SHORIN IN INCHES (MILLINETERS).

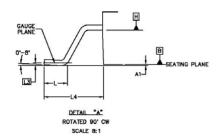
 LEAD DIMENSION AND FINISH INCONTROLLED IN L1.

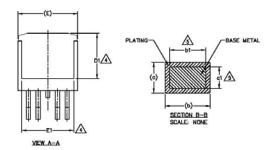
 4.— DIMENSION D, DI &E DO NOT INCLIDE MOLD FLASH, MILD FLASH DIMENSIONS ARE MEASURED AT THE OUTENINGS TERRICALS OF THE PUSHOD BODY.

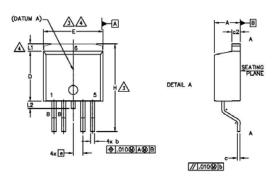
 DIMENSION DI & et A POPLY TO BASE MITTAL ONLY.

 6.— CONTROLLING DIMENSION: SIONES.

 7.— THERMAL PAD CONTROL OPTIONAL WHITE DIMENSIONS EHJ, D2 &E I.


 PRIMESSION DE 3. YLL DEEDER A 720% MARDES ESTAINDING.


- DIMENSION E 2 X H1 DETRIE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.

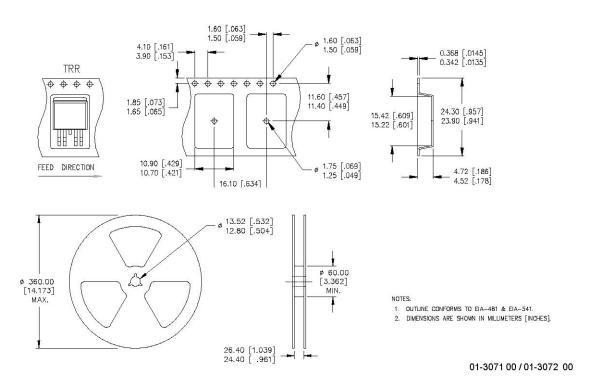

 OUTLINE CONFERNS TO JEDEC TO-220, EUCEPT AZ (mox.) AND DZ (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

10.- LEADS AND DRAIN ARE PLATED WITH 100% Sn

Case Outline 5 Lead - D2PAK - Automotive Q100 PbF MSL1 qualified

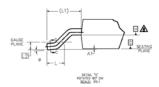
NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- △ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATINU M.

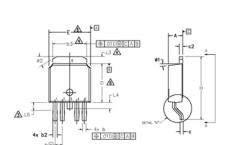

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

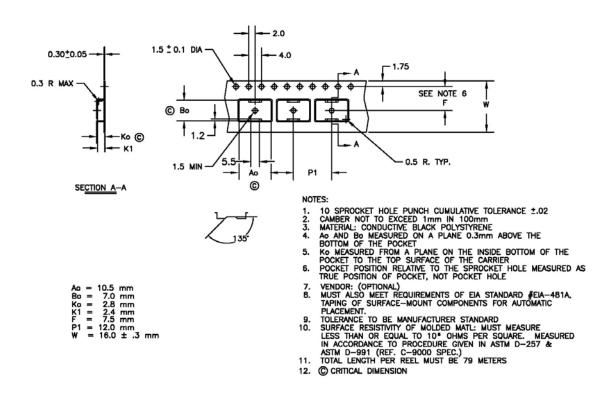
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263BA.
- 9 LEADS AND DRAIN ARE PLATED : 100% Sn


S Y		DIMENSIONS							
M B O	МШМ	ETERS	INC	Ö					
Ĺ	MIN.	MAX.	MIN.	MAX.	Ė				
Α	4.06	4.83	.160	.190					
A1	-	0.254	-	.010					
ь	0.51	0.99	.020	.039	4				
ь1	0.51	0.89	.020	.035					
C	0.38	0.74	.015	.029					
e 1	0.38	0.58	.015	.023	4				
c2	1.14	1.65	.045	.065					
D	8.38	9.65	.330	.380	3				
D1	6.86	-	.270	-					
E	9.65	10.67	.380	.420	3				
E1	6.22		.245						
e	1.70	_	.067	_					
н	14.61	15.88	.575	.625					
L	1.78	2.79	.070	.110					
L1	100	1.68		.066					
L2	1=	1.78		.070					
L3	0.25	BSC	.010	BSC					
L4	4.78	5.28	.188	.208					

Tape & Reel 5 Lead - D2PAK



Case Outline 5 Lead - DPAK - Automotive Q100 PbF MSL1 qualified



Γ	MAS		DIMEN	ISIONS		N
ı	В	MILLIM	ETERS	INC	HES	Ö
	0 L	MIN.	MAX.	MIN.	MAX.	Š
Γ	Α	2.18	2.39	.086	.094	
ı	A1	-	0.13	-	.005	
ı	ь	0.51	0.89	.020	.035	
ı	Ь1	.051	0.84	.020	.033	2
	ь3	4.95	5.46	.195	.215	2
ı	С	0.46	0.61	.018	.024	
ı	c1	0.41	0.56	.016	.022	2
П	c2	0.46	0.89	.018	.035	
ı	D	5.97	6.22	.235	.245	3
ı	D1	5.21	-	.205	-	
ı	Ε	6.35	6.73	.250	.265	3
ı	E1	4.32	-	.170	-	
ı	е	1.14	BSC	.045	BSC	
ı	Н	9.40	10.41	.370	.410	
ı	L	1.40	1.78	.055	.070	
ı	L1	2.74	BSC	.108	REF.	
	L2	0.51	BSC	.020	BSC	
	L3	0.89	1.27	.035	.050	
	L4	-	1.02	-	.040	
	L5	1.14	1.52	.045	.060	
	ø	0.	10*	0.	10°	
	ø1	0.	15*	0.	15*	
L	ø2	28*	32*	28*	32*	

NOTES:

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- 8.- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252.
- 10. LEADS AND DRAIN ARE PLATED WITH 100% Sn

Tape & Reel 5 Lead - DPAK

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice.

TO220, D2Pak and Dpak is MSL1 qualified.

This product has been designed and qualified for the Automotive [Q100] market. 29/10/2010