

HiRel RadHard Power-MOS

- Low R_{DS(on)}
- Total Ionisation Dose (TID) hardened 100 kRad approved
- Hermetically sealed
- N-channel

Туре	Marking	Pin Co	nfigurati	ion		Package
		1	2	3	4	
BUY25CS45B-01	-	D	S	G	Not connected	TO-254AA

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain Source Voltage	V _{DS}	250	V
Gate Source Voltage	V _{GS}	+/- 20	V
Drain Gate Voltage	V _{DG}	250	V
Continuous Drain Current $T_c = 25 \ ^{\circ}C$ $T_c = 100 \ ^{\circ}C$	ID	45 29	A
Continuous Source Current	Is	45	А
Drain Current Pulsed, t_p limited by T_{jmax}	I _{DM}	180	Apk
Total Power Dissipation 1)	P _{tot}	208	W
Junction Temperature	TJ	-55 to + 150	°C
Operating and Storage Temperature	T _{op}	-55 to + 150	°C
Avalanche Energy	E _{AS}	380	mJ

Thermal Characteristics

Thermal Resistance (Junction to Case)	R _{th JC}	0.6	K/W
Soldering Temperature	T _{sol}	250	°C

Notes .:

1) For $T_S \le 25^{\circ}$ C. For $T_S > 25^{\circ}$ C derating is required.

Data Sheet BUY25CS45B-01

Electrical Characteristics, at T_A=25°C; unless otherwise specified

Symbol		Values	5	Unit
	min.	typ.	max.	
B _{VDSS}	250	-	-	V
$V_{\text{GS(th)}}$	2.0	-	4.0	V
I _{GSS}	-	-	+/-100	nA
I _{DSS}	-	-	25	μA
r _{DS(ON)}	-	-	0.05	Ω
V _{SD}	-	-	1.4	V
t _{d(ON)}	-	25	50	ns
tr	-	20	95	ns
$t_{d(OFF)}$	-	55	80	ns
t _f	-	7	75	ns
t _{rr}	-	530	600	ns
C _{iss}	3.5	-	6.5	nF
Coss	250	-	400	pF
C _{rss}	5	-	20	pF
Q _G	-	70	100	nC
	B _{VDSS} V _{GS(th)} I _{GSS} I _{DSS} r _{DS(ON)} V _{SD} t _{d(ON)} t _r t _{d(OFF)} t _f t _f c _{iss} C _{oss} C _{rss}	min. B_{VDSS} 250 $V_{GS(th)}$ 2.0 I_{GSS} - I_{DSS} - $\Gamma_{DS(ON)}$ - V_{SD} - $t_{d(ON)}$ - $t_{d(OFF)}$ - $t_{d(OFF)}$ - t_{rr} - t_{rr} - t_{f} - t_{rr} - C_{iss} 3.5 C_{oss} 250 C_{rss} 5	min. typ. B_{VDSS} 250 - $V_{GS(th)}$ 2.0 - I_{GSS} - - I_{DSS} - - I_{DSS} - - V_{SD} - - V_{SD} - - $t_{d(ON)}$ - 25 t_r - 20 $t_{d(OFF)}$ - 55 t_f - 530 C_{iss} 3.5 - C_{oss} 250 - C_{rss} 5 -	min. typ. max. B_{VDSS} 250 - - $V_{GS(th)}$ 2.0 - 4.0 I_{GSS} - - 4.0 I_{GSS} - - 4.0 I_{DSS} - - 4.0 I_{DSS} - - 25 $\Gamma_{DS(ON)}$ - - 0.05 V_{SD} - - 1.4 Id(ON) - 25 50 tr - 20 95 td(OFF) - 55 80 tr - 530 600 tr - 530 600 Ciss 3.5 - 400 Crss 5 - 20

Notes.: 1) Pulsed Measurement: Pulse Width < 300µs, Duty Cycle <2.0%. 2) Measured within 2.0 mm of case.

Electrical Characteristics

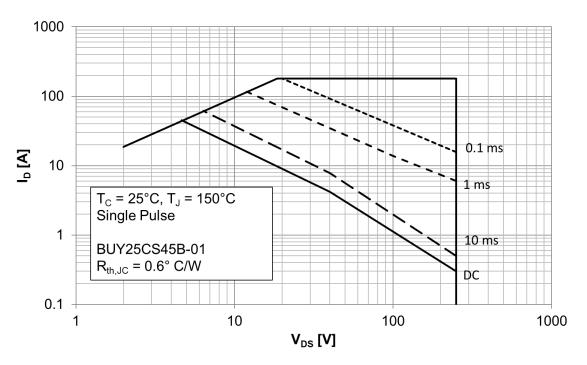
at TA=125°C; unless otherwise specified

Parameter	Symbol	Va	lues	Unit
		min.	max.	
DC Characteristics				
Gate Threshold Voltage $I_D = 1.0 \text{mA}, V_{DS} \ge V_{GS}$	V _{GS(th)}	1.5	-	V
Gate to Source Leakage Current $V_{DS} = 0V, V_{GS} = +/-20V$	I _{GSS}	-	+/-200	nA
Drain Current $V_{DS} = 200V, V_{GS} = 0V$	I _{DSS}	-	250	μA
Drain Source On Resistance ¹⁾ $V_{GS} = 10V, I_D = 29A$	r _{DS(ON)}	-	0.09	Ω

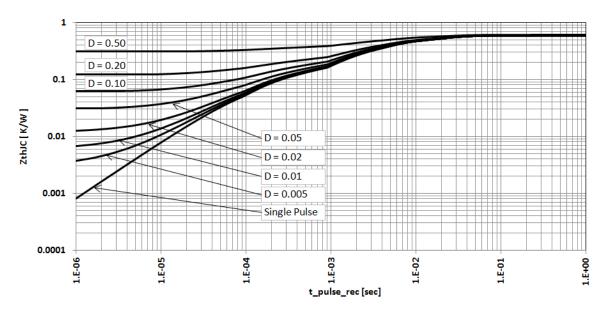
Notes.: 1) Pulsed Measurement: Pulse Width < 300µs, Duty Cycle <2.0%.

Electrical Characteristics

at T_A=-55°C; unless otherwise specified


Parameter	Symbol	Values		Unit	
		min.	max.		
DC Characteristics		-			
Gate Threshold Voltage $I_D = 1.0 \text{mA}, V_{DS} \ge V_{GS}$	$V_{GS(th)}$	-	5.0	V	

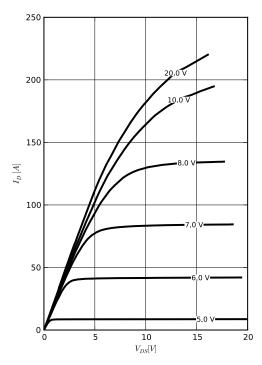
Data Sheet BUY25CS45B-01

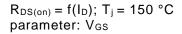

1 Safe operating area

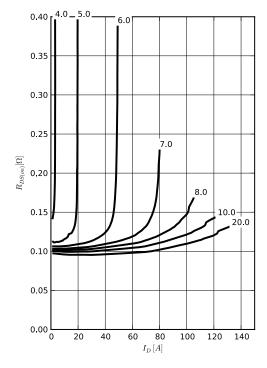
 $I_D = f(V_{DS}); T_C = 25^{\circ}C$ parameter: t_p

2 Max. transient thermal impedance

 $Z_{thJC} = f(t_p)$ parameter: D = t_p/T

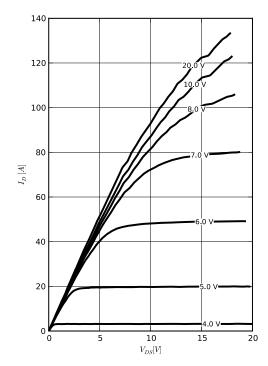

IFAG PMM RFS D HIR


Data Sheet

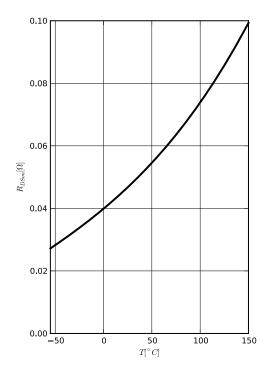

3 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 \ ^{\circ}C$ parameter: V_{GS}

5 Typ. drain-source on-state resistance



BUY25CS45B-01

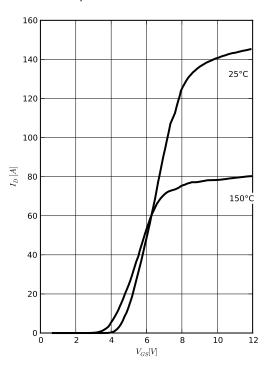

4 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 150 \ ^{\circ}C$ parameter: V_G

6 Typ. drain-source on-state resistance

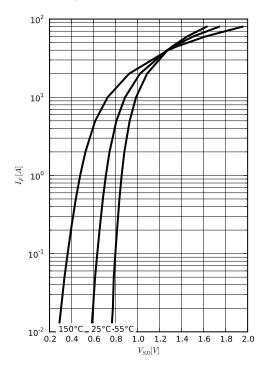
 $\begin{array}{l} R_{DS(on)} = f(T_j) \\ I_D = 29A \end{array}$

IFAG PMM RFS D HIR

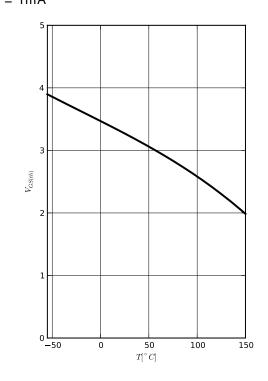


Data Sheet

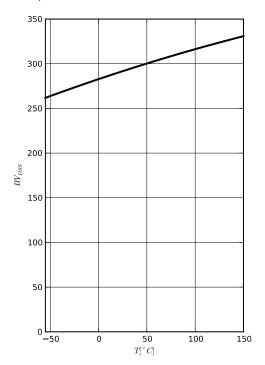
BUY25CS45B-01


7 Typ. transfer characteristics

$I_D = f(V_{GS}); |VDS| > 2 |I_D| R_{DS(on)max}$ parameter: T_j


9 Typ. forward characteristics of reverse diode

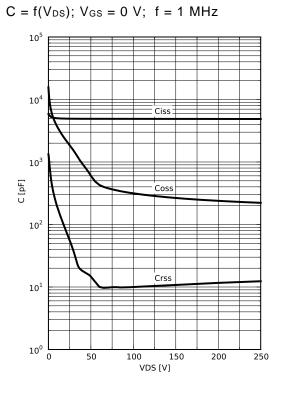
I⊧ = f(VsD) parameter: Tj



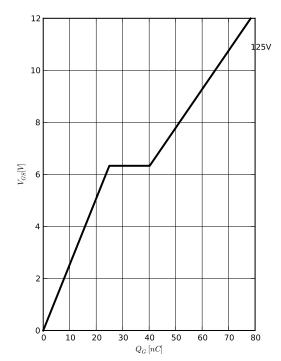

```
I_D = f(T_j)
I_D = 1mA
```


10 Typ. drain-source breakdown voltage

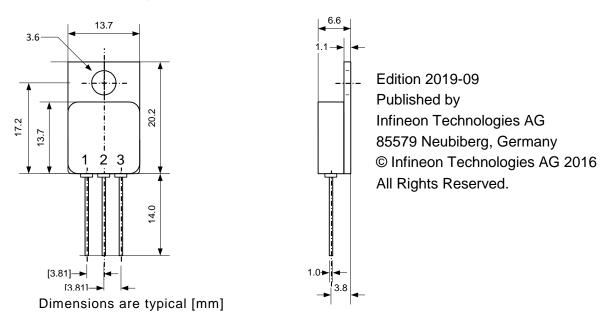
 $BV_{DSS} = f(T_j)$ $I_D = 250 \mu A$


IFAG PMM RFS D HIR

Data Sheet


BUY25CS45B-01

11 Typ. capacitances


12 Typ. gate charge

 $V_{GS} = f(Q_{gate}); ID = 45.0 A pulsed parameter: V_{DD}$

TO-254AA Package

Caution

This package contains beryllia. Therefore it must not be in any form machined, grinded, sanded, polished or any other mechanical operation which will produce dust and particles.

Attention please!

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of a third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (<u>www.infineon.com</u>).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.