

AUIPS2031R

INTELLIGENT POWER LOW SIDE SWITCH

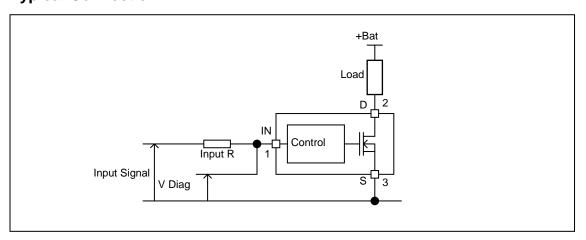
Features

- Over temperature shutdown
- Over current shutdown
- Active clamp
- Low current & logic level input
- ESD protection
- Optimized Turn On/Off for EMI
- · Diagnostic on the input current

Description

The AUIPS2031R is a three terminal Intelligent Power Switch (IPS) that features a low side MOSFET with overcurrent, over-temperature, ESD protection and drain to source active clamp. This device offers protections and the high reliability required in harsh environments. The switch provides efficient protection by turning OFF the power MOSFET when the temperature exceeds 165°C or when the drain current reaches 15A. The device restarts once the input is cycled. A serial resistance connected to the input provides the diagnostic. The avalanche capability is significantly enhanced by the active clamp and covers most inductive load demagnetizations.

Product Summary


 $\begin{array}{ll} \text{Rds(on)} & 60\text{m}\Omega\,(\text{max.}) \\ \text{Vclamp} & 68\text{V} \\ \text{Ishutdown} & 10\text{A}\,\,(\text{min.}) \end{array}$

Packages

DPak AUIPS2031R

Typical Connection

Qualification Information[†]

~~~							
		Automotive					
Qualification Level		(per AEC-Q10011)	(per AEC-Q100 ^{††} )				
		Comments: This family of ICs has passed an Au Industrial and Consumer qualification level is g					
		higher Automotive level.					
		DDAY O	MSL1, 260°C				
Moisture Sensitivity Level		DPAK-3L	(per IPC/JEDEC J-STD-				
			020)				
	Machine Model	Class M3 (+/-400V)					
	Macrime Model	(per AEC-Q100-003)	(per AEC-Q100-003)				
ESD	Liver on Dody Model	Class H1C (+/-2000V)					
ESD	Human Body Model	(per AEC-Q100-002)					
	Charged Davies Medal	Class C4 (+/-1000V)					
Charged Device Model		(per AEC-Q100-011)					
IC Latch-Up Test		Class II, Level A					
		(per AEC-Q100-004)					
RoHS Compliant		Yes					

- † Qualification standards can be found at International Rectifier's web site <a href="http://www.irf.com/">http://www.irf.com/</a>
- †† Exceptions to AEC-Q100 requirements are noted in the qualification report.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.



## **Absolute Maximum Ratings**

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tj= -40°C..150°C, Vcc=6..50V unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vds	Maximum drain to source voltage	-0.3	60	V
Vin	Maximum input voltage	-0.3	6	V
Isd cont.	Max diode continuous current (limited by thermal dissipation) Rth=50°C/W	_	2.5	Α
Pd	Maximum power dissipation (internally limited by thermal protection)  Rth=50C°/W	_	2.5	W
Ti max.	Maximum operating junction temperature	-40	150	°C
ijiiiax.	Maximum storage temperature	-55	150	

#### **Thermal Characteristics**

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS2031R D-Pak std. footprint	70	_	
Rth2	Thermal resistance junction to ambient IPS2031R D-Pak 1" sqr. footprint	50	_	°C/W
Rth3	Thermal resistance junction to case IPS2031R D-Pak	2.5	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter		Min.	Max.	Units
VIH	High level input voltage			5.5	
VIL	Low level input voltage			0.5	
lds	Continuous drain current, Tambient=85°C, Tj:	ontinuous drain current, Tambient=85°C, Tj=125°C, Vin=5V,Rth=70°C/W			Α
Rin	Recommended resistor in series with IN pin	Recommended resistor in series with IN pin Input signal voltage=5V (1)			kΩ
		Input signal voltage=4V (1)		1	K22
Max. t rise	Max. input signal rising time (from 10% to 90%	%)(2)	_	0.5	μs

⁽¹⁾ Input signal of the pulse generator not the voltage on the IN pin of the device. Do not connect any other component on

⁽²⁾ Max. t rise is for the input signal of the pulse generator not on the IN pin voltage of the device



### **Static Electrical Characteristics**

Tj=-40..150°C, Vcc=6..50V (unless otherwise specified)

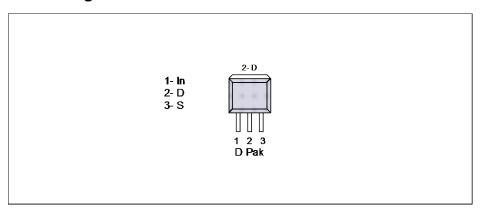
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	_	45	60	mΩ	Vin=5V. Ids=5A
	ON state resistance Tj=150°C	_	80	110	1112.2	VIII=5V, IUS=5A
ldss1	Drain to source leakage current	_	0.1	1		Vcc=14V, Vin=0V,
						Tj=25°C
ldss2	Drain to source leakage current	_	0.15	2	μA	Vcc=50V, Vin=0V,
						Tj=25°C
V clamp1	Drain to source clamp voltage 1	63	68	_		Id=20mA See fig. 3 & 4
V clamp2	Drain to source clamp voltage 2	_	68	75	V	Id=1A
Vin clamp	IN to source pin clamp voltage	5.5	6.2	7.5	v	lin=1mA
Vth	Input threshold voltage	1.1	2	2.8		Id=200mA
lin, on	ON state IN positive current	10	40	80		Vin=5V
lin, off	OFF state IN positive current	120	250	350	μΑ	
	( after protection latched )					

## **Switching Electrical Characteristics**

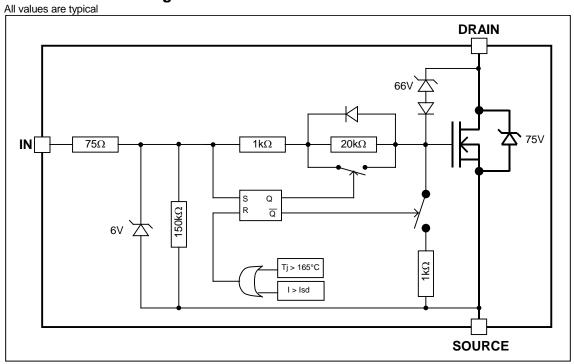
Vcc=28V. Resistive load= $10\Omega$ . Rinput= $50\Omega$ . Vin=5V. Ti=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to 20%	0.5	2	5		
Tr	Rise time 20% to 80%	0.2	1.4	3		See figure 2
Tdoff	Turn-off delay time to 80%	3	8	12	μs	See ligure 2
Tf	Fall time 80% to 20%	0.2	1.4	3		
Eon + Eoff	Turn on and off energy	_	110	_	μJ	

#### **Protection Characteristics**


Tj=-40..150°C, Vcc=6..50V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tsd	Over temperature threshold	150(2)	165	_	°C	See figure 1
Isd	Over current threshold	10	15	20	Α	See figure 1
Vreset	IN protection reset threshold	0.9	1.6	2	V	
Treset	Time to reset protection	15	50	500	μs	Vin=0V, Tj=25°C


⁽²⁾ Guaranteed by design



# **Lead Assignments**



# **Functional Block Diagram**





All curves are typical values. Operating in the shaded area is not recommended.

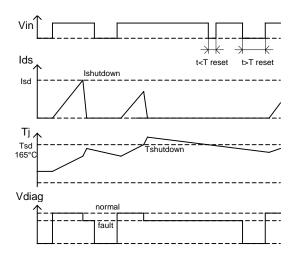



Figure 1 - Timing diagram

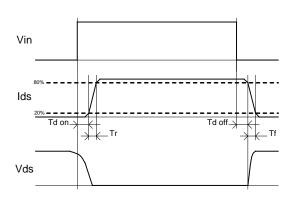



Figure 2 - IN rise time & switching definitions

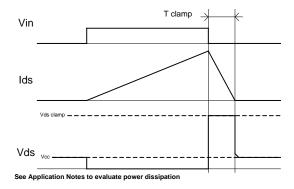



Figure 3 - Active clamp waveforms

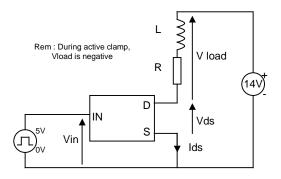



Figure 4 - Active clamp test circuit



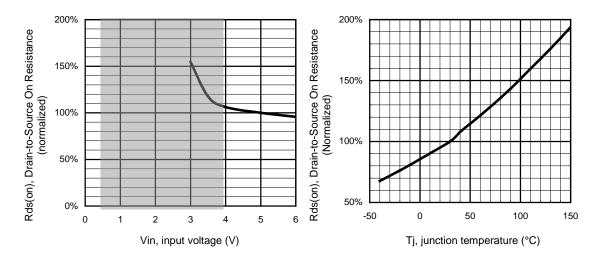
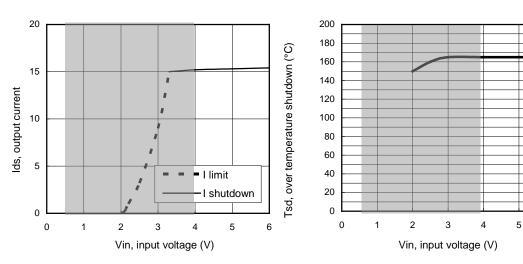



Figure 5 - Normalized Rdson (%) Vs Input voltage (V)



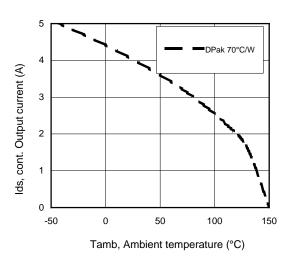


Figure 7 – Current limitation and current shutdown Vs Input voltage (V)

Figure 8 – Over temperature shutdown (°C)
Vs input voltage (V)

Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

6





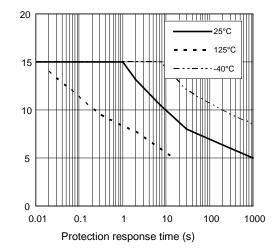



Figure 9 – Max. continuous output current (A) Vs Ambient temperature (°C)

Figure 10 – Ids (A) Vs over temperature protection response time (s)

ds, output current (A)

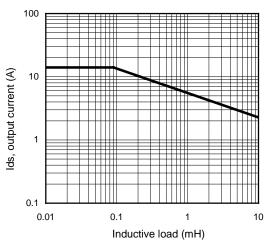



Figure 11 – Max. ouput current (A) Vs Inductive load (mH)

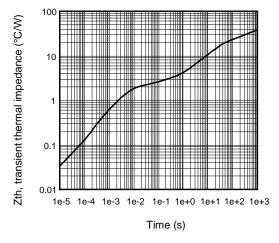



Figure 12 – Transient thermal impedance (°C/W)
Vs time (s)

This is for single pulse when Tj=165°C and for repetitive pulses when Tj<115°C before turning off.



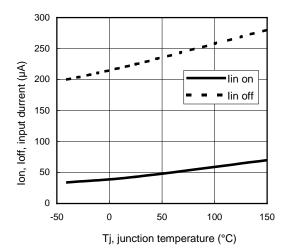
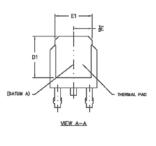
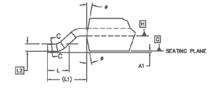
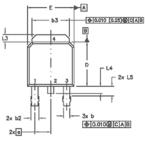
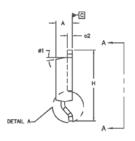





Figure 13 - Input current (µA) On and Off Vs junction temperature (°C)




# Case outline - Dpak







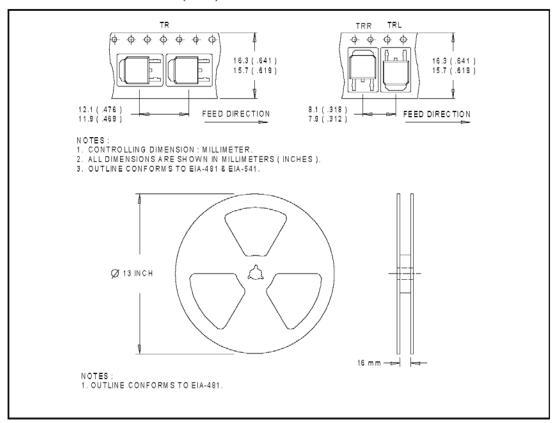
DETAIL "A"



		DIMEN	SIONS		]
SYMBOL	MILLIM	ETERS	INC	HES	1
	MN.	MAX.	MINL	MAX	NOTES
A	2.18	2.30	.086	.004	
AI		0.13		.005	
b	0.64	0.89	.025	.035	5
ы	0.84	0.79	.025	0.031	5
b2	0.76	1.14	.030	.045	
63	4.95	5.48	.195	.215	
e e	0.48	0.61	.018	.024	5
cl	0.41	0.56	.016	.022	5
o2	.048	0.89	.018	.035	5
D	5.97	8.22	.235	.245	6
DI	5.21	- 1	.205	-	4
E	4.35	6.73	-250	.265	6
Ð	4.32	-	.170		4
	2.29		.090	BSC	]
н	9.40	10.41	.370	.410	1
L	1.40	1,78	.055	.070	
ш	2.74	REF.	.108	REF.	]
L2	0.51	BSC	.020	BSC	]
L3	0.89	1.27	.035	.050	1
L4		1.02		.040	
L5	1.14	1.02	.045	.080	3
	σ	10"	0	10*	
#1	a	15"	o o	15"	

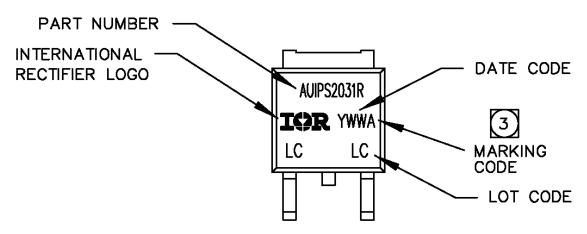





- 1.0 2.0 3.0 4.0 5.0

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
  DIMENSIONIS ARE SHOWN IN INCHES [MILLIMETERS].
  LEAD DIMENSIONI SARE SHOWN IN INCHES [MILLIMETERS].
  LEAD DIMENSION DI AND ELI ESTABLESH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
  SECTION C-C DIMENSIONIS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 [0.127] AND
  .010 [0.2540 FROM THE LEAD TIP.
  DIMENSION D &É DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED
  .005" (0.127) PER SIDE: THESE DIMENSIONIS ARE MEASURED AT THE OUTERMOST
  EXTREMES OF THE PLASTIC BODY.
  OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.
- 8.0 LEADS AND DRAIN ARE PLTED WITH 100% Sn




## Tape & Reel - Dpak

Dimensions are shown in millimeters (inches)





# **Part Marking Information**



# **Ordering Information**

Base Part Number	D	Standard Pack	Occupated a Boot News Low	
base i ait i dilibei	Package Type	Form	Quantity	Complete Part Number
		Tube	75	AUIPS2031R
AUIPS2031R	D-Pak-5-Lead	Tape and reel	2000	AUIPS2031RTR
		Tape and reel left	3000	AUIPS2031RTRL
		Tape and reel right	3000	AUIPS2031RTRR



#### IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

#### **WORLD HEADQUARTERS:**

101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105



**Revision History** 

Revision	Date	Notes/Changes
A4	March, 25 th , 2010	Add tri-temp ds
A5	May, 10 th 2010	Update before qual
A6	November, 17 th 2010	Final release
A7	December, 7 th 2010	Remove ESD section page3
A8	December, 9 th 2010	Update qual page
В	June, 21 st 2012	Update storage temperature
С	December, 3 rd 2012	Update switching losses
		Add a note figure 11
D	April, 18 th 2013	Update Recommended Input resistor