

Thermally-Enhanced High Power RF LDMOS FETs 220 W, 869 – 894 MHz

Description

The PTFA082201E and PTFA082201F are 220-watt LDMOS FETs designed for CDMA and WCDMA power amplifier applications in the 869 to 894 MHz band. Features include input and output matching, and thermally-enhanced packages with slotted or earless flanges. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

- Efficiency = 30%
- Intermodulation distortion = -37 dBc
- Adjacent channel power = -39.5 dBc
- Typical CW performance, 894 MHz, 30 V
 Output power at P–1dB = 250 W
 - Efficiency = 59%
- Integrated ESD protection: Human Body Model, Class 2 (minimum)
- Excellent thermal stability, low HCI drift
- Capable of handling 10:1 VSWR at 30 V, 220 W (CW) output power

RF Characteristics

Two-carrier WCDMA Measurements (not subject to production test—verified by design/characterization in Infineon test fixture) $V_{DD} = 30 \text{ V}, I_{DO} = 1950 \text{ mA}, P_{OUT} = 55 \text{ W}$ average

 f_1 = 884 MHz, f_2 = 894 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 8.1 dB @ 0.01% CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	_	18.0	_	dB
Drain Efficiency	η _D	_	30	_	%
Intermodulation Distortion	IMD	_	-37	_	dBc

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

RF Characteristics (cont.)

Two-tone Measurements (tested in Infineon test fixture)

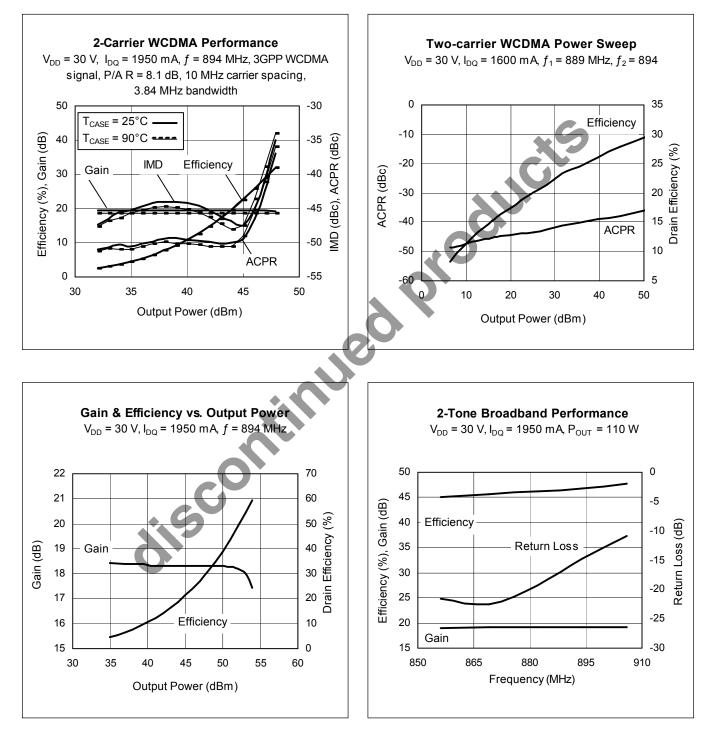
 V_{DD} = 30 V, I_{DQ} = 1950 mA, P_{OUT} = 220 W PEP, f = 894 MHz, tone spacing = 1 MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	17.5	18.0	_	dB
Drain Efficiency	η _D	40	43	_	%
Intermodulation Distortion	IMD	_	÷	-29	dBc
DC Characteristics			S		

DC Characteristics

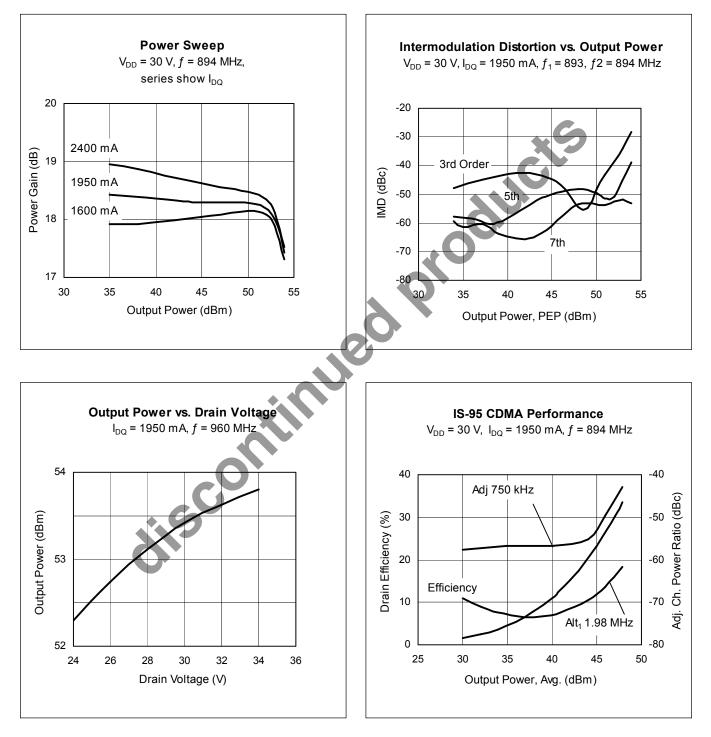
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{DS} = 10 mA$	V _{(BR)DSS}	65	_	_	V
Drain Leakage Current	$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	IDSS	_	_	1.0	μA
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	IDSS	_	_	10.0	μA
On-State Resistance	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.04	_	Ω
Operating Gate Voltage	V _{DS} = 30 V, I _{DQ} = 1950 mA	V _{GS}	2.0	2.5	3.0	V
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_	_	1.0	μA
Maximum Ratings						

Maximum Ratings

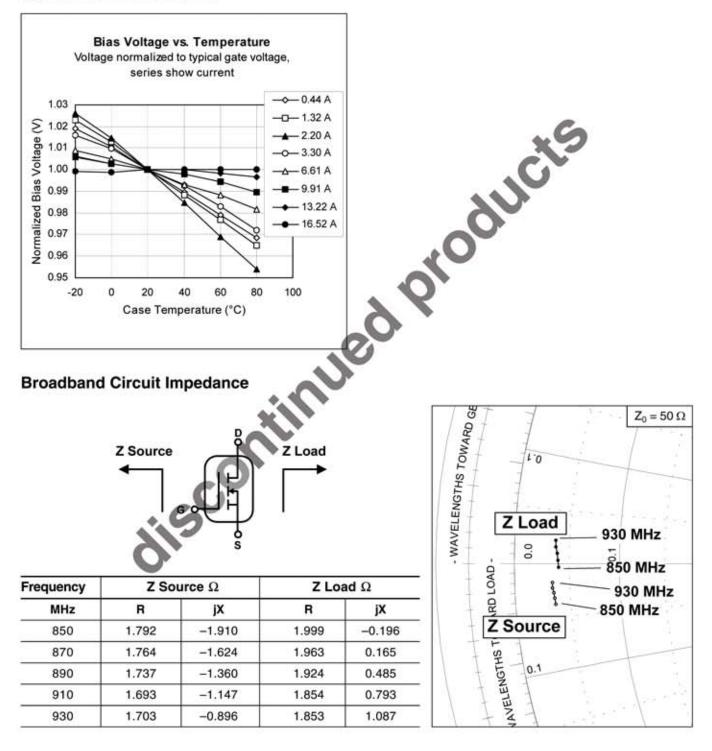

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	V
Gate-Source Voltage	V _{GS}	-0.5 to +12	V
Junction Temperature	ТJ	200	°C
Total Device Dissipation	PD	700	W
Above 25°C derate by		4.0	W/°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 220 W CW)	$R_{ extsf{ heta}JC}$	0.25	°C/W

Ordering Information

Type and Versic	on	Package Outline	Package Description	Shipping	Marking
PTFA082201E	V4	H-36260-2	Thermally-enhanced slotted flange, single-ended	Tray	PTFA082201E
PTFA082201F	V4	H-37260-2	Thermally-enhanced earless flange, single-ended	Tray	PTFA082201F



Typical Performance (data taken in a production test fixture)



Typical Performance (cont.)

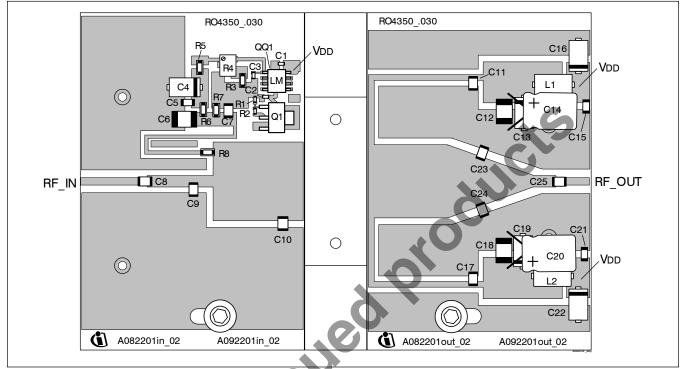


Typical Performance (cont.)

Reference Circuit

Reference circuit schematic for f = 894 MHz

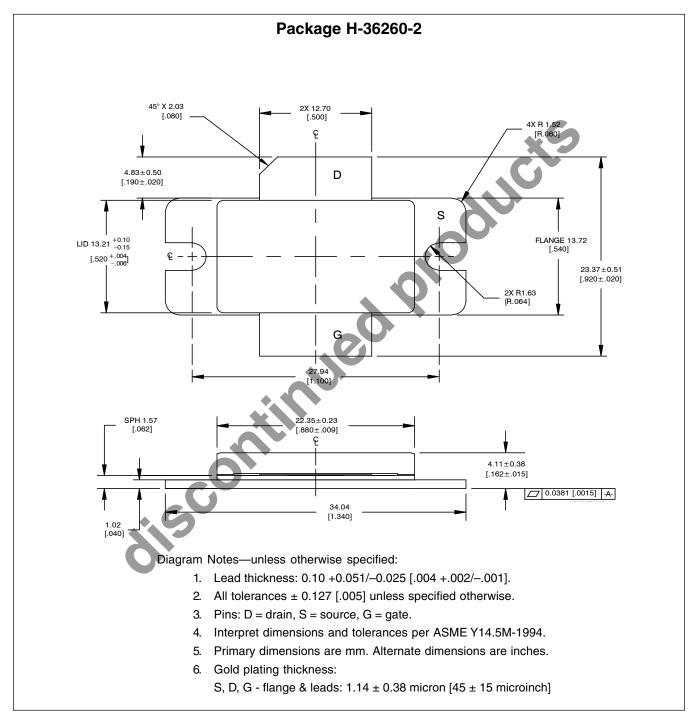
Circuit Assembly Information


DUT	PTFA082201E or PTFA082201F	LDMOS Transistor	
PCB	0.76 mm [.030"] thick, $\varepsilon_r = 3.48$	Rogers RO4350	1 oz. copper
100		They are the topo	1 02. 000001

Microstrip	Electrical Characteristics at 894 MHz ¹	Dimensions: L x W (mm)	Dimensions: L x W (in.)
<i>l</i> 1	0.065 λ, 50.0 Ω	13.13 x 1.60	0.517 x 0.063
<i>l</i> 2	0.049 λ, 38.0 Ω	9.78 x 2.54	0.385 x 0.100
<i>l</i> 3	0.024 λ, 38.0 Ω	4.83 x 2.54	0.190 x 0.100
<i>l</i> 4	0.083 λ, 7.8 Ω	15.44 x 17.83	0.608 x 0.702
<i>l</i> 5	0.027 λ, 7.8 Ω	4.95 x 17.83	0.195 x 0.702
<i>l</i> 6	0.190 λ, 78.0 Ω	40.64 x 0.74	1.600 x 0.029
<i>l</i> 7, <i>l</i> 8	0.183 λ, 60.0 Ω	37.54 x 1.24	1.478 x 0.049
<i>l</i> 9	0.095 λ, 8.4 Ω	17.68 x 16.48	0.696 x 0.649
ℓ 10 (taper)	0.031 λ, 8.4 Ω / 11.2 Ω	5.94 x 16.48 / 11.91	0.234 x 0.649 / 0.469
ℓ 11 (taper)	0.077 λ, 11.2 Ω / 37.0 Ω	14.53 x 11.91 / 2.64	0.572 x 0.469 / 0.104
<i>ℓ</i> 12	0.025 λ, 37.0 Ω	4.98 x 2.64	0.196 x 0.104
<i>ℓ</i> 13	0.028 λ, 50.0 Ω	5.74 x 1.60	0.226 x 0.063

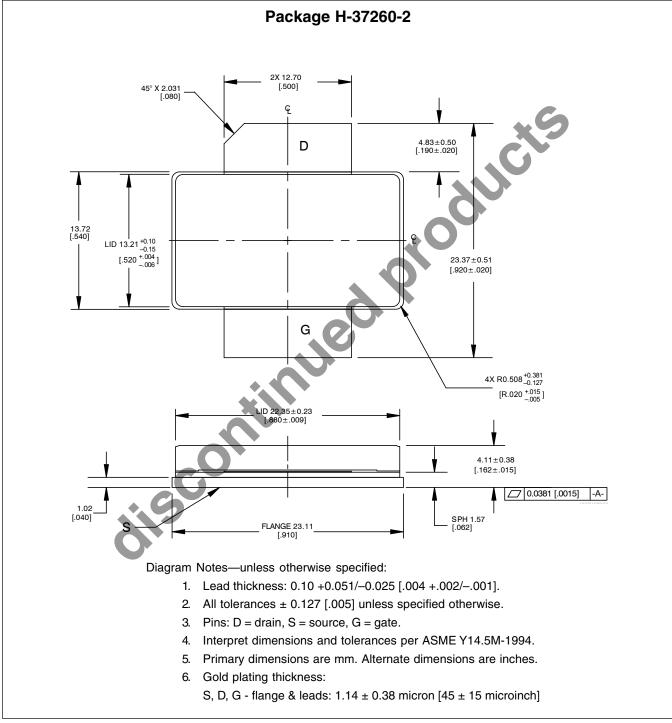
¹Electrical characteristics are rounded.

Reference Circuit (cont.)


Reference circuit assembly diagram (not to scale)*

Component	Description	Suggested Manufacturer	P/N or Comment
C1, C2, C3	Capacitor, 0.001 µF	Digi-Key	PCC1772CT-ND
C4	Tantalum capacitor, 10 µF, 35 V	Digi-Key	399-1655-2-ND
C5, C15, C21	Capacitor, 0.1 µF	Digi-Key	PCC104BCT-ND
C6, C12, C18	Capacitor, 1 µF	ATC	920C105
C7, C8, C11, C17, C25	Ceramic capacitor, 33 pF	ATC	100B 330
C9	Ceramic capacitor, 3.9 pF	ATC	100B 3R9
C10	Ceramic capacitor, 8.2 pF	ATC	100B 8R2
C13, C16, C19, C22	Tantalum capacitor, 10 µF, 50 V	Garrett Electronics	TPSE106K050R0400
C14, C20	Electrolytic capacitor, 100 µF, 50 V	Digi-Key	P5182-ND
C23, C24	Ceramic capacitor, 3.3 pF	ATC	100B 3R3
L1, L2	Ferrite, 8.9 mm	Elna Magnetics	BDS 4.6/3/8.9-4S2
Q1	Transistor	Infineon Technologies	BCP56
QQ1	Voltage regulator	National Semiconductor	LM7805
R1	Chip resistor 1.2 k-ohms	Digi-Key	P1.2KGCT-ND
R2	Chip resistor 1.3 k-ohms	Digi-Key	P1.3KGCT-ND
R3	Chip resistor 2 k-ohms	Digi-Key	P2KECT-ND
R4	Potentiometer 2 k-ohms	Digi-Key	3224W-202ETR-ND
R5, R8	Chip resistor 10 ohms	Digi-Key	P10ECT-ND
R6, R7	Chip resistor 5.1 k-ohms	Digi-Key	P5.1KECT-ND

*Gerber Files for this circuit available on request



Package Outline Specifications

Package Outline Specifications (cont.)

Find the latest and most complete information about products and packaging at the Infineon Internet page *http://www.infineon.com/rfpower*

PTFA082201E/F V4

Revision H	listory: 2015-01-09	Data Sheet
Previous V	/ersion: 2009-02-20, Data Sheet	
Page	Subjects (major changes since last revision)	
All	Product discontinued. Please see PD notes : PD_215_14.	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

Edition 20! " &! " ¹! * Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

inved

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.