

V _{DSS}	25	٧
$R_{DS(on)}$ max $(@V_{GS} = 10V)$	0.95	mΩ
(@ V _{GS} = 4.5V)	1.60	
Qg (typical)	56	nC
I _D (@T _{C (Bottom)} = 25°C)	324	A

Applications

- OR-ing MOSFET for 12V (typical) Bus in-Rush Current
 Battery Operated DC Motor Inverters

Features

Low R_{DSon} (<0.95m Ω)	
Low Thermal Resistance to PCB (<0.8°C/W)	
Low Profile (<0.9 mm)	results in
Industry-Standard Pinout	\Rightarrow
Compatible with Existing Surface Mount Techniques	
RoHS Compliant, Halogen-Free	
MSL1, Industrial Qualification	
7	

Benefits

	Lower Conduction Losses
	Enable better thermal dissipation
n	Increased Power Density
	Multi-Vendor Compatibility
	Easier Manufacturing
	Environmentally Friendlier
	Increased Reliability

Page port number	Bookaga Typa	Standard P	ack	Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRFH8201PbF	PQFN 5mm x 6 mm	Tape and Reel	4000	IRFH8201TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	49	
I _D @ T _{C (Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V ⑤	324	1
I _D @ T _{C (Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V ⑤	205	A
I _{DM}	Pulsed Drain Current	1296	
P _D @T _A = 25°C	Power Dissipation ④	3.6	14/
P _D @T _{C (Bottom)} = 25°C	Power Dissipation 4	156	W
	Linear Derating Factor ④	0.029	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		°C

Notes ① through ⑥ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		20		mV/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		0.80	0.95	mO	$V_{GS} = 10V, I_D = 50A$ ②
$R_{DS(on)}$	Static Dialii-to-Source Off-Resistance		1.20	1.60	mΩ	V _{GS} = 4.5V, I _D = 50A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.80	2.35	V	V - V I - 150uA
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.1		mV/°C	$V_{DS} = V_{GS}$, $I_D = 150 \mu A$
	Drain to Course Leakage Current			1.0		$V_{DS} = 20V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			150	μA	$V_{DS} = 20V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
gfs	Forward Transconductance	181			S	$V_{DS} = 10V, I_{D} = 50A$
Q_g	Total Gate Charge		111		nC	$V_{GS} = 10V, V_{DS} = 13V, I_{D} = 50A$
Q_g	Total Gate Charge		56	84		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		16		1	V _{DS} = 13V
Q _{gs2}	Post-Vth Gate-to-Source Charge		7.0		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		18			I _D = 50A
Q _{godr}	Gate Charge Overdrive		15			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		25			
Q_{oss}	Output Charge		39		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.1		Ω	
$t_{d(on)}$	Turn-On Delay Time		27			$V_{DD} = 13V, V_{GS} = 4.5V$
t _r	Rise Time		54		ns	$I_D = 50A$
$t_{d(off)}$	Turn-Off Delay Time		31		1	$R_G=4.7\Omega$
t _f	Fall Time		22		1	
C _{iss}	Input Capacitance		7330			$V_{GS} = 0V$
C_{oss}	Output Capacitance		1730		pF	$V_{DS} = 13V$
C _{rss}	Reverse Transfer Capacitance		850			f = 1.0 MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ①		437	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			156		MOSFET symbol
	(Body Diode)			156	_	showing the
I _{SM}	Pulsed Source Current			1206	Α	integral reverse
	(Body Diode)			1296		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25$ °C, $I_S = 50$ A, $V_{GS} = 0$ V ②
t _{rr}	Reverse Recovery Time		25	38	ns	$T_J = 25^{\circ}C$, $I_F = 50A$, $V_{DD} = 13V$
Q _{rr}	Reverse Recovery Charge		57	86	nC	di/dt = 400A/µs ②

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case ③	0.5	0.8	
R _{θJC} (Top)	Junction-to-Case ③		21	°C/W
$R_{\theta JA}$	Junction-to-Ambient ④		35	
R _{θJA} (<10s)	Junction-to-Ambient ④		20	



Fig 1. Typical Output Characteristics

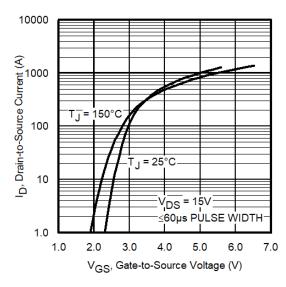
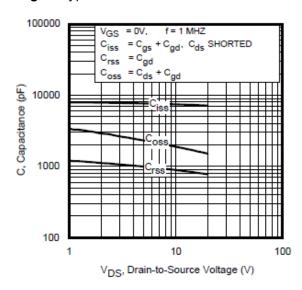



Fig 3. Typical Transfer Characteristics

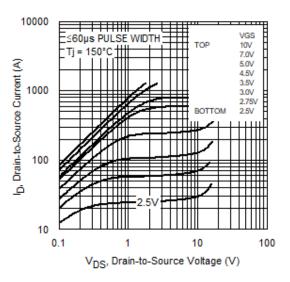


Fig 2. Typical Output Characteristics

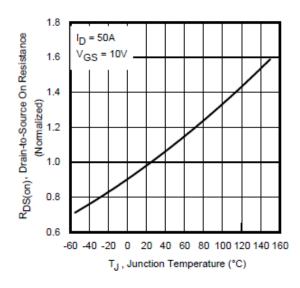


Fig 4. Normalized On-Resistance vs. Temperature

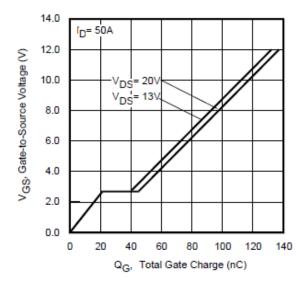


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

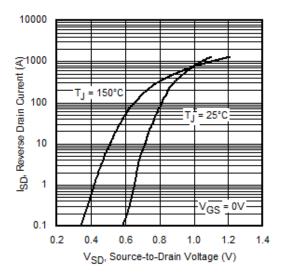


Fig 7. Typical Source-Drain Diode Forward Voltage

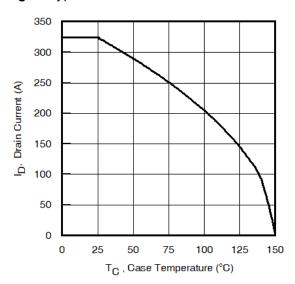


Fig 9. Maximum Drain Current vs. Case Temperature

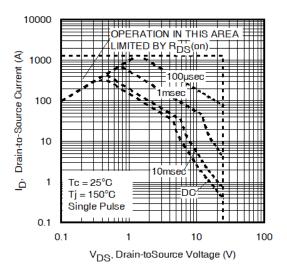


Fig 8. Maximum Safe Operating Area

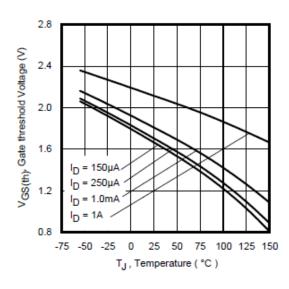


Fig 10. Threshold Voltage Vs. Temperature

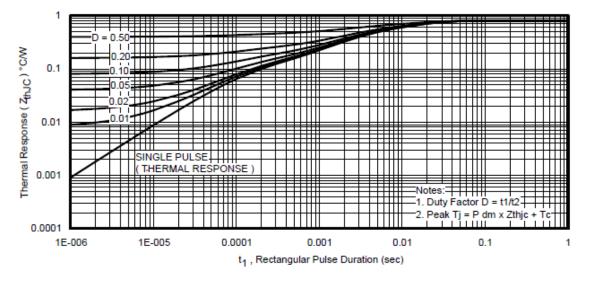
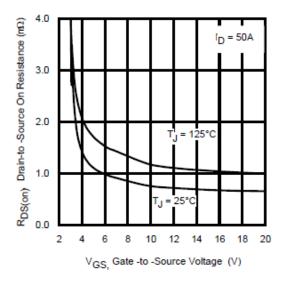



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

4

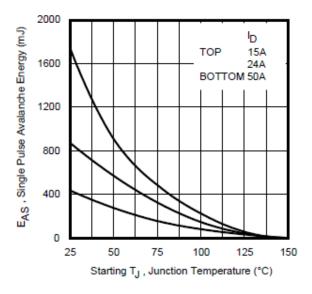


Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

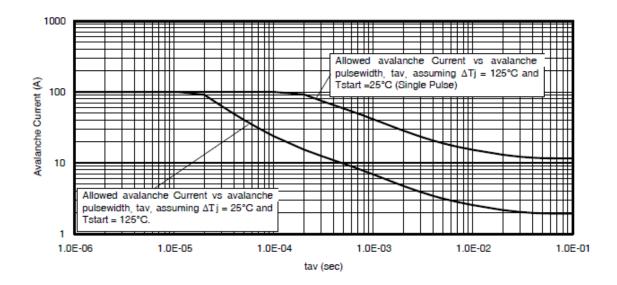


Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width

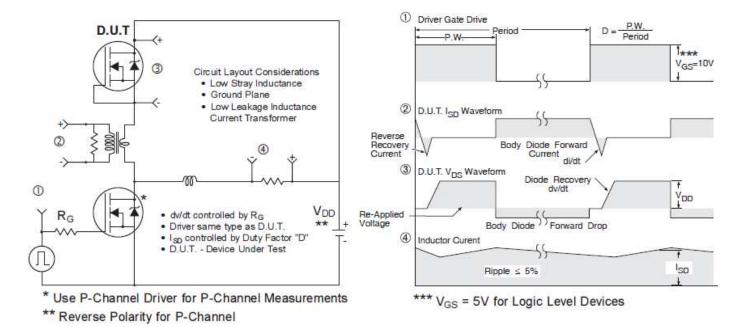


Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

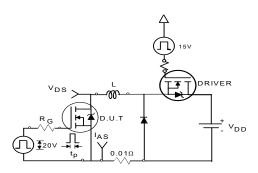


Fig 16a. Unclamped Inductive Test Circuit

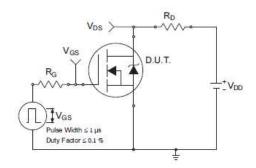


Fig 17a. Switching Time Test Circuit

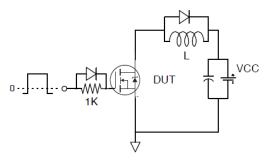


Fig 18a. Gate Charge Test Circuit

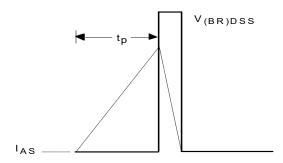


Fig 16b. Unclamped Inductive Waveforms

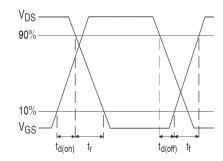


Fig 17b. Switching Time Waveforms

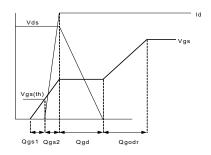
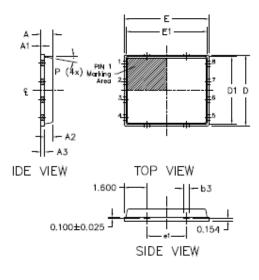



Fig 18b. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details

R2

BOTTOM VIEW

r 0.395

L (хв) d

- L (4x)

A3	0.20	0 REF	0.007	9 REF	
b	0.350	0.470	0.0138	0.0185	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.150	0.450	0.0059	0.0177	
D	5.00	0 BSC	0.196	9 BSC	
D1	4.75	0 BSC	0.187	0 BSC	
D2	4.100	4.300	0.1614	0.1693	
E	6.00	0 BSC	0.2362 BSC		
E1	5.75	0 BSC	0.2264 BSC		
E2	3.380	3.780	0.1331	0.1488	
e	1.27	70 REF	0.05	00 REF	
e1	2.80	0 REF	0.1102 REF		
K	1.200	1.420	0.0472	0.0559	
L	0.710	0.900	0.0280	0.0354	
Р	0,	12*	0,	12*	
R	0.200 REF		0.007	9 REF	
	0.150	0.200	0.0059	0.0079	

MILLIMITERS

MAX

0.900

0.050

MIN

0.800

0.000

DIM

SYMBOL

Α Α1

Note:

INCH

0.0000 0.0020

MAX

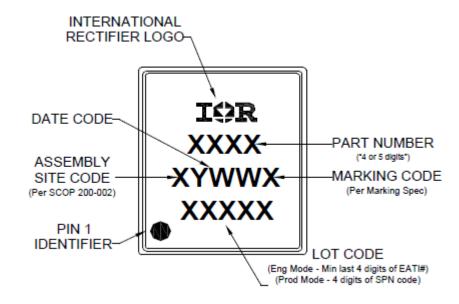
0.0543

MIN

0.0315

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is goceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

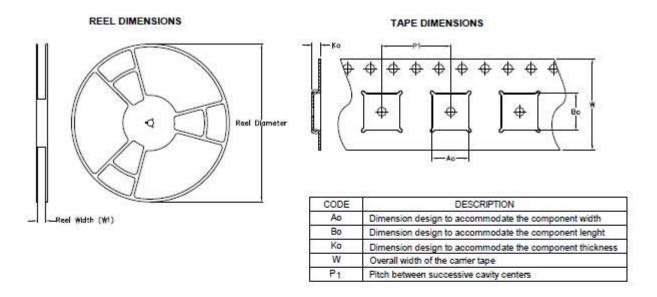
For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

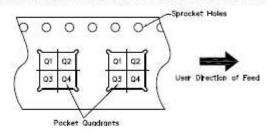

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Part Marking

0.422 -

D2


Expose Pad


Note: For the most current drawing please refer to IR website at http://www.irf.com/packaging

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.irf.com/packaging

Qualifiction Information[†]

Qualification Level	Industrial (per JEDEC JESD47F [†] guidelines)				
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{†)}			
RoHS Compliant	Yes				

[†] Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Starting $T_J = 25^{\circ}C$, L = 0.35mH, $R_G = 50\Omega$, $I_{AS} = 50A$.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf
- S Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 9. De-rating will be required based on the actual environmental conditions.

Revision History

Date	Rev.	Comments
10/23/2013	2.1	Added Rdson @ 4.5V-page1, 2
7/30/2014	2.2	 Updated IDM from "400A" to "700A" on page1, 2. Updated Fig1, Fig2, Fig3, Fig7 & Fig8 on page 3, 4.
3/11/2015	2.3	Updated package outline and tape and reel on pages 7 and 8.
12/14/2020	2.4	 Updated datasheet based on IFX template. Updated Datasheet based on new current rating and application note: App-AN_1912_PL51_2001_180356 Removed "HEXFET® Power MOSFET" -page1

Trademarks of Infineon Technologies AG

HUNIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGan™, COOLIR™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-16 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie")**.

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.