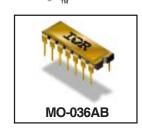
International TOR Rectifier

RADIATION HARDENED LOGIC LEVEL POWER MOSFET THRU-HOLE (MO-036AB)


Product Summary

Part Number	Radiation Level	RDS(on)	ΙD
IRHLG77214	100K Rads (Si)	1.1Ω	0.8A
IRHLG73214	300K Rads (Si)	1.1Ω	0.8A

International Rectifier's R7TM Logic Level Power MOSFETs provide simple solution to interfacing CMOS and TTL control circuits to power devices in space and other radiation environments. The threshold voltage remains within acceptable operating limits over the full operating temperature and post radiation. This is achieved while maintaining single event gate rupture and single event burnout immunity.

The device is ideal when used to interface directly with most logic gates, linear IC's, micro-controllers, and other device types that operate from a 3.3-5V source. It may also be used to increase the output current of a PWM, voltage comparator or an operational amplifier where the logic level drive signal is available.

2N7614M1 IRHLG77214 250V, Quad N-CHANNEL TECHNOLOGY

Features:

- 5V CMOS and TTL Compatible
- Fast Switching
- Single Event Effect (SEE) Hardened
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Light Weight

Absolute Maximum Ratings

Pre-Irradiation

	Parameter		Units
ID @ VGS = 4.5V, TC= 25°C	Continuous Drain Current	0.8	
ID @ VGS = 4.5V, TC= 100°C	Continuous Drain Current	0.5	Α
IDM	Pulsed Drain Current ①	3.2	
P _D @ T _C = 25°C	Max. Power Dissipation	1.4	W
	Linear Derating Factor	0.01	W/°C
VGS Gate-to-Source Voltage		±10	V
EAS Single Pulse Avalanche Energy ②		50.4	mJ
IAR	Avalanche Current ①	0.8	Α
EAR	Repetitive Avalanche Energy ①	0.14	mJ
dv/dt	Peak Diode Recovery dv/dt 3	12.3	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063in/1.6mm from case for 10s)	
	Weight	1.3 (Typical)	g

For footnotes refer to the last page

www.irf.com 1 02/25/11

IRHLG77214, 2N7614M1

Pre-Irradiation

Electrical Characteristics For Each N-Channel Device @ Tj = 25°C (Unless Otherwise specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	250	_	_	V	VGS = 0V, ID = 250μA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.34	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	1.1	Ω	VGS = 4.5V, ID = 0.5A
VGS(th)	Gate Threshold Voltage	1.0	_	2.0	V	V _{DS} = V _{GS} , I _D = 250μA
ΔVGS(th)/ΔTJ	Gate Threshold Voltage Coefficient	_	-6.0	_	mV/°C	
9fs	Forward Transconductance	1.0	_	_	S	V _{DS} = 15V, I _{DS} = 0.5A ④
IDSS	Zero Gate Voltage Drain Current		_	1.0		V _{DS} = 200V ,V _{GS} = 0V
		_	_	10	μΑ	VDS = 200V,
						VGS = 0V, TJ =125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100		VGS = 10V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	nA	VGS = -10V
Qg	Total Gate Charge	_	_	15		$V_{GS} = 4.5V, I_{D} = 0.8A$
Qgs	Gate-to-Source Charge		_	3.5	nC	V _{DS} = 125V
Qgd	Gate-to-Drain ('Miller') Charge	_	—	8.3		
^t d(on)	Turn-On Delay Time	_	_	18		$V_{DD} = 125V, I_D = 0.8A,$
tr	Rise Time	_	_	85	ns	$V_{GS} = 4.5V, R_{G} = 7.5\Omega$
td(off)	Turn-Off Delay Time		_	35]	
tf	Fall Time	_	_	30		
LS+LD	Total Inductance	_	10	l —		Measured from Drain lead (6mm /0.25in
					nH	from pack.) to Source lead (6mm/0.25in
						from pack.)with Source wire internally
						bonded from Source pin to Drain pad
Ciss	Input Capacitance	_	552	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	69	_	рF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	1.43	-		
Rg	Gate Resistance	_	6.77	_	Ω	f = 1.0MHz, open drain

Source-Drain Diode Ratings and Characteristics (Per Die)

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	0.8	Α	
ISM	Pulse Source Current (Body Diode) ①		_	_	3.2	^	
VSD	Diode Forward Voltage		_	_	1.2	V	$T_j = 25$ °C, $I_S = 0.8A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time		_	_	290	ns	$T_j = 25^{\circ}C$, $I_F = 0.8A$, $di/dt \le 100A/\mu s$
QRR	Reverse Recovery Charge		_	_	388	nC	V _{DD} ≤ 25V ④
ton	Forward Turn-On Time In	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance (Per Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJA	Junction-to-Ambient	_	_	90	°C/W	Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier Web site.

For footnotes refer to the last page

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation © @ (Per Die)

	Parameter	meter Up to 300K Rads (Si) ¹		Units	Test Conditions
		Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	250	_	V	$V_{GS} = 0V, I_D = 250\mu A$
V _{GS(th)}	Gate Threshold Voltage	1.0	2.0		$V_{GS} = V_{DS}, I_{D} = 250 \mu A$
IGSS	Gate-to-Source Leakage Forward	_	100	nA	V _{GS} = 10V
IGSS	Gate-to-Source Leakage Reverse	_	-100		V _{GS} = -10V
IDSS	Zero Gate Voltage Drain Current	_	10	μA	V _{DS} = 200V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source 4				
	On-State Resistance (TO-39)	_	??	Ω	$V_{GS} = 4.5V, I_{D} = 0.5A$
R _{DS(on)}	Static Drain-to-Source On-state 4				
	Resistance (MO-036AB)	_	1.1	Ω	$V_{GS} = 4.5V, I_{D} = 0.5A$
V _{SD}	Diode Forward Voltage ④	_	1.2	V	Vgs = 0V, I _D = 0.8A

^{1.} Part numbers IRHLG77214, IRHLG73214

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area

LET	Energy	Range	VDS (V)							
(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS= 0V	@VGS= -2V	@VGS= -4V	@VGS= -5V	@VGS= -6V	@VGS= -7V		
38 ± 5%	300 ± 7.5%	38 ± 7.5%	250	250	250	250	250	250		
62 ± 5%	355 ± 7.5%	33 ± 7.5%	250	250	250	250	250	-		
85 ± 5%	380 ± 7.5%	29 ± 7.5%	250	250	250	250	-	-		

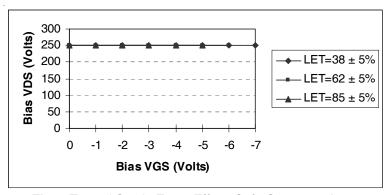


Fig a. Typical Single Event Effect, Safe Operating Area

For footnotes refer to the last page

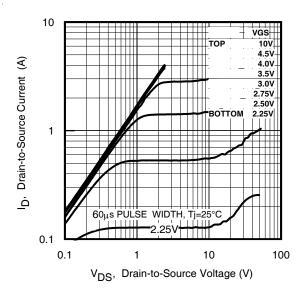


Fig 1. Typical Output Characteristics

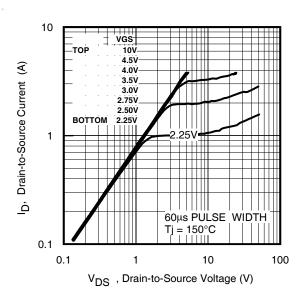


Fig 2. Typical Output Characteristics

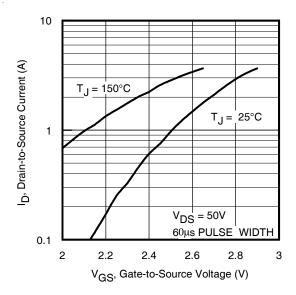
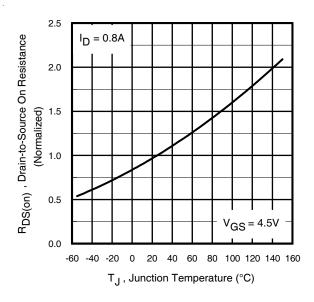



Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

4

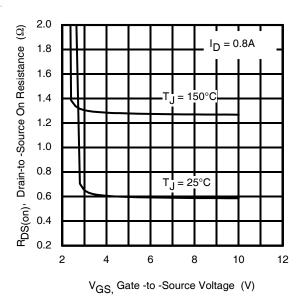


Fig 5. Typical On-Resistance Vs Gate Voltage

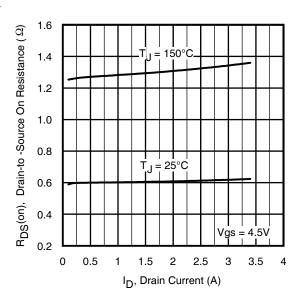
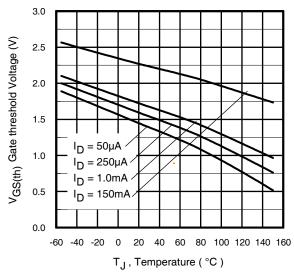
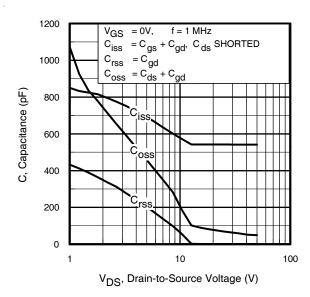
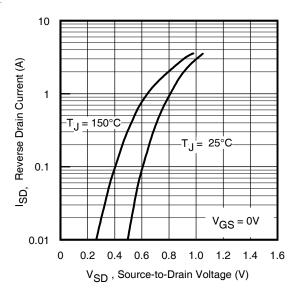



Fig 6. Typical On-Resistance Vs Drain Current

Fig 7. Typical Drain-to-Source Breakdown Voltage Vs Temperature

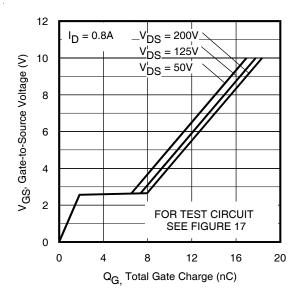

Fig 8. Typical Threshold Voltage Vs
Temperature

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 11. Typical Source-to-Drain Diode Forward Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

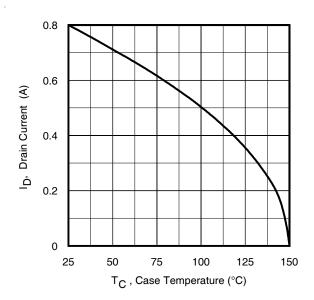
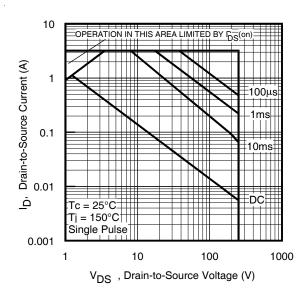



Fig 12. Maximum Drain Current Vs.
Case Temperature
www.irf.com

6

Pre-Irradiation

120 E_{AS} , Single Pulse Avalanche Energy (mJ) Р TOP 0.80A 100 0.50A **BOTTOM** 0.36A 80 60 20 0 25 50 100 125 150 Starting T_J, Junction Temperature (°C)

Fig 13. Maximum Safe Operating Area

Fig 14. Maximum Avalanche Energy Vs. Drain Current

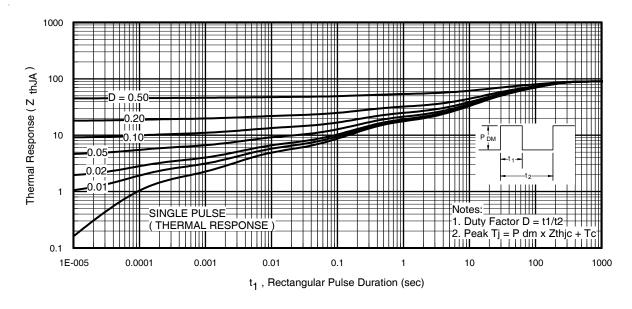


Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com

IRHLG77214, 2N7614M1

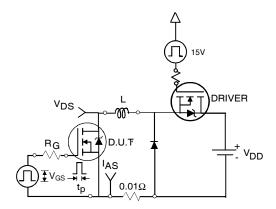


Fig 16a. Unclamped Inductive Test Circuit

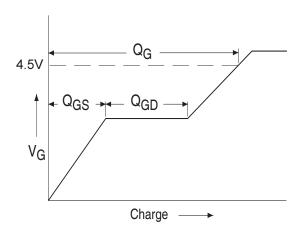
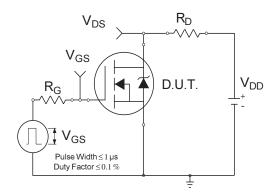



Fig 17a. Basic Gate Charge Waveform

Fig 18a. Switching Time Test Circuit 8

Pre-Irradiation

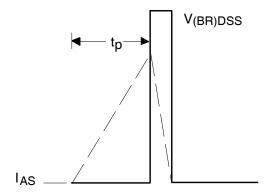


Fig 16b. Unclamped Inductive Waveforms

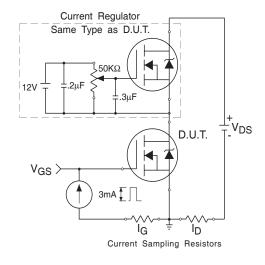
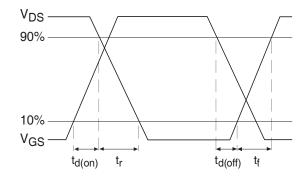
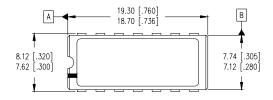
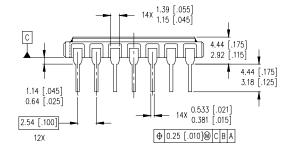
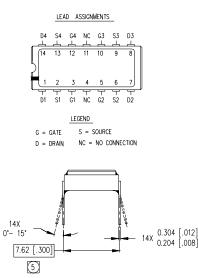



Fig 17b. Gate Charge Test Circuit


Fig 18b. Switching Time Waveforms www.irf.com


Footnotes:


- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L= 157mH Peak I_L = 0.8A, V_{GS} = 10V
- $\label{eq:local_state} \begin{tabular}{ll} \begin{tabular}{ll}$

- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- Total Dose Irradiation with VGS Bias. 10 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- © Total Dose Irradiation with Vps Bias. 200 volt Vps applied and Vgs = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — MO-036AB

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MO-036AB.
- MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDICULAR TO DATUM PLANE C.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 02/2011