

7 A H-Bridge for DC-Motor Applications

Preliminary Datasheet

Overview

- 1 Features
- Operating supply voltage 5 V to 28 V
- Typical $R_{\text{DSon}} = 150 \text{ m}\Omega$ for each output transistor (at 25 °C)
- Continuos DC load current 3.5 A ($T_{\rm C}$ < 100 °C)
- Output current limitation at typ. 6.6 A \pm 1.1 A
- Short circuit shut down for output currents over 8 A
- Logic- inputs TTL/CMOS-compatible
- Operating-frequency up to 30 kHz
- Over temperature protection
- Short circuit protection
- Undervoltage disable function
- Diagnostic by SPI or Status-Flag (configurable)
- Enable and Disable input
- P-DSO-20-12 power package

Туре	Ordering Code	Package
TLE 7209R	on request	P-DSO-20-12

Functional Description

motors in safety critical applications and under extreme environmental conditions. The TLE 7209R is an intelligent full H-Bridge, designed for the control of DC and stepper

cause the output stages to go tristate. voltage lockout for all the supply voltages " V_{S} " (main DC power supply). All malfunctions The H-Bridge is protected against over temperature and short circuits and has an under

SPI mode. In this mode, detailed failure diagnosis is available via the serial interface. information via a simple error flag. When supplied with V_{CC} = 5 V, the device works in The device is configurable by the DMS pin. When grounded, the device gives diagnostic

TLE 7209R

Overview

1.2 Pin Configuration

TLE 7209R

Figure 1 Pinout TLE 7209R

Preliminary Datasheet

V1.1, 2002-11-26

Preliminary Datasheet

N

Downloaded from Arrow.com.

V1.1, 2002-11-26

Overview

Infineon technologies

TLE 7209R

Overview

1.ω Block Diagram

DMS

۷_scp

-	
∼s s	

Pin Definiti	Pin Definitions and Functions	nctions
Pin. No.	Symbol	Function
-	GND	Ground
N	SCK/SF	SPI-Clock/Status-flag
З	IN1	Input 1
4	$V_{\rm S}$ CP	Supply voltage for internal charge pump
U	$V_{\sf S}$	Supply voltage
6	OUT1	Output 1
7	OUT1	Output 1
8	SDO	Serial data out
9	SDI	Serial data in
10	GND	Ground
11	GND	Ground
12	DMS	Diagnostic-Mode selection (+ Supply voltage for SPI-Interface)
13	E	Enable
14	OUT2	Output 2
15	OUT2	Output 2
16	$V_{\sf S}$	Supply voltage, must be connected to pin 5
17	CSN	Chip Select (low active)
18	DIS	Disable
19	IN2	Input 2
20	GND	Ground

EN [DIS [CSN [SDI SDO SCK/SF

SPI

8 Bit Logic and Latch

œ

Driver

Gate-Control

Bias

Charge Pump

Fault-Detect

± ₽

IN1

Direct

ाच सि

H tr

Under Voltage

Over Temperature

GND

Ļ

Table 1 Pinning

Figure 2

Block Diagram TLE 7209R

Preliminary Datasheet

V1.1, 2002-11-26

ω

Preliminary Datasheet

V1.1, 2002-11-26

L

4

Circuit Description

TLE 7209R

Circuit Description

N Circuit Description

2.1 Control Inputs

Enable inputs DIS and EN. The bridge is controlled by the Inputs IN1, IN2, DIS and EN as shown in **Table 2**. The outputs OUT1 and OUT2 are set to High or Low by the parallel inputs IN1 and IN2, respectively. In addition, the outputs can be disabled (set to tristate) by the Disable and

Inputs IN1, IN2 and DIS have an internal pull-up. Input EN has an internal pull-down.

Functional Truth Table

Pos.	DIS	EN	IN1	IN2	OUT1	OUT2 SF ¹⁾ SPI ²⁾ DIA_1	SF ¹⁾	SPI ²⁾ DIA_REG
1. Forward	Г	Н	Т	Г	н	Г	Т	see
2. Reverse	L	Н	Г	Т	L	Н	Т	Chapter 2.4.2
3. Free-wheeling low	L	Н	L	L	L	L	Т	
4. Free-wheeling high	L	Н	Т	Т	Н	Н	Т	
5. Disable	Н	Х	Х	Х	Z	Z	L	
6. Enable	Х	L	Х	Х	Z	Z	Г	
7. IN1 disconnected	L	Н	Ζ	Х	Н	Х	Т	
8. IN2 disconnected	L	Н	Х	Z	х	Н	н	
9. DIS disconnected	Ζ	×	×	×	Z	Z	Г	
10. EN disconnected	×	Z	×	×	Z	Z	Г	
11. Current limit. active	Г	Т	×	×	Z	Z	Т	
12. Under Voltage	×	×	×	×	Z	Z	Г	
13. Over temperature	×	×	×	×	N	Z	Г	
14. Over current	×	×	×	×	Z	Z	Г	
¹⁾ If Mode "Status-Flag" is selected (see Chapter 2.4)	ed (see	Chapte	er 2.4)					

²⁾ If Mode "SPI-Diagnosis" is selected (see **Chapter 2.4**)

Table 2

Functional Truth Table

Preliminary Datasheet

V1.1, 2002-11-26

Preliminary Datasheet

ი

V1.1, 2002-11-26

СЛ

Intineon technologies

2.2 Power Stages

ground, to the supply voltage or across the load. Positive and negative voltage spikes, to generate a voltage higher than the supply voltage. diodes. To drive the gates of the high-side DMOS, an internal charge pump is integrated which occur when switching inductive loads, are limited by integrated freewheeling protect the outputs against over current and over temperature if there is a short-circuit to Four n-channel power-DMOS transistors build up the output H-bridge. Integrated circuits

2.2.1 **Chopper Current Limitation**

shown in Figure 3. The current is measured by sense cells integrated in the low-side switches. As soon the current limit I_{L} is reached, the low-side switch is switched off for a To limit the output current at low power loss, a chopper current limitation is integrated as fixed time t_a .

Figure 3 Chopper current limitation

Circuit Description

TLE 7209R

Circuit Description

2.2.2 **Temperature-depending Current Limitation**

 $I_{\rm L}$ = 2.5 A ± 1.1 Å as shown in Figure 4 For 165 °C < $T_{\rm j}$ < 175 °C the current limit decreases from $I_{\rm L}$ = 6.6 A ± 1.1 A to

Figure 4 Temperature dependent current limitation

2.3 2 Protection

by the tollowing measures: The TLE 7209R is protected against short circuits, overload and invalid supply Voltage

2.3.1 Short circuit to Ground

current shutdown. If a high-side switch is turned on and the current rises above the short Circuit to Ground on output 1 (2)", SCG1 (SCG2) is stored in the internal status register. circuit detection current I_{OUK} all output transistors are turned off and the error bit "Short The high-side switches are protected against a short of the output to ground by an over

2.3.2 Short circuit to V_S

to Battery on output 1 (2)", SCB1 (SCB2) is set Figure 5). All output transistors are turned OFF and the according error bit "Short Circuit current I_{OUK} is reached within this blanking time, a short circuit is detected (see the current has exceeded the current limit threshold $I_{\rm L}$. If the short circuit detection current limit operation, the current limitation is deactivated for the blanking time $t_{\rm b}$ after against a short to the supply voltage. To be able to distinguish a short circuit from normal Due to the chopper current regulation, the low-side switches are already protected

detected

2.3.3 Short circuit across the load

If short circuit messages from high- and low-side switch occur simultaneously within a delay time of typically 2 μ s, the error bit "Short Circuit Over Load", SCOL is set.

V1.1, 2002-11-26

Preliminary Datasheet

œ

V1.1, 2002-11-26

Preliminary Datasheet

2.3.4

Over-Temperature

2.3.5

Under-Voltage shutdown.

2.4

Diagnosis

outputs are set to tristate and the error-bit "Under-Voltage at $V_{\rm S}$ " is set.

If the supply-voltage at the $V_{\rm S}$ pins falls below the under-voltage detection threshold, the

output transistors are shut down and the error-bit "Over-Temperature", OT is set temperature may rise above the thermal shutdown temperature $T_{\rm SD}$. In that case, all In case of high DC-currents, insufficient cooling or high ambient temperature, the chip

TLE 7209R

ntineon

Circuit Description

TLE 7209R

Circuit Description

- I In the SF-mode, all internal circuitry is supplied by the voltage on $V_{\rm S}$. For that reason, a loss of $V_{\rm S}$ supply voltage leads to a reset of all stored information (**Power-ON-**Reset). This Power-ON-Reset occurs as soon as under-Voltage is detected on $V_{\rm S}$
- reset by one of the following conditions: H -> L on DIS, L -> H on EN or Power-ON In case of short circuit, over-current or over-temperature, the fault will be stored. Reset. The output stage remains in tristate and the status-flag at low-level until the error is

2.4.2 SPI-Mode (DMS = 5V)

2.4.2.1 SPI-Interface

SDO) systems microcontroller. The TLE 7209R always operates in slave mode whereas the controller provides the master function. The maximum baud rate is 2 MBaud (200pF on The serial SPI interface establishes a communication link between TLE 7209R and the

select signal (High) the data output SDO goes into tristate. (Serial Clock Input) the SPI clock is provided by the master. In case of inactive slave master. SDI is the data input (Slave In), SDO the data output (Slave Out). Via SCK By applying an active slave select signal at CSN the TLE 7209R is selected by the SPI

addressing. This gives the opportunity to operate up to 4 Slave-devices sharing one common CSN signal from the Master-Unit (see Figure 7) The first two bits of an instruction may be used to establish an extended device-

I I

Short circuit between OUT1 and OUT2

Short circuit of OUT1 or OUT2 against $V_{\rm S}$ or GND

I I

Overtemperature Overcurrent

I

In case of **under-Voltage**, the failure is not latched. As soon as $V_{\rm S}$ falls below the

under-Voltage detection threshold, the output stage switches in tristate and the statusflag is set from high level to low-level. If the voltage has risen above the specified value

again, the output stage switches on again and the status-flag is reset to high-level

The Under Voltage failure is shown at the SF pin for $V_{\rm S}$ in the voltage range below the

2.4.1.2

Fault storage and reset

– Under Voltage on $V_{\rm S}$

SF pin pulled to low). These failures are:

In case of any failure that leads to a shut-down of the outputs, the status-flag is set (e.g.

to the logic supply voltage with a pull-up resistor, 47 kOhm recommended

In SF-mode, pin 2 is used as an open-drain output status-flag. The pin has to be pulled

2.4.1

Status-Flag (SF) Mode (DMS = GND)

For the connection of Pins SDI, SDO, CSN and SCK/SF see Figure 14 and Figure 15

Diagnosis. The choice of the Diagnosis-Mode is selected by the voltage-level on Pin 12 The Diagnosis-Mode can be selected between SPI-Diagnosis and Status-Flag

• DMS = V_{CC} , SPI-Diagnosis Mode DMS = GND, Status-Flag Mode (DMS Diagnosis Mode Selection):

2.4.1.1

SF output

SPI block-diagram

Preliminary Datasheet

detection threshold (typical 4.7V) down to 2.5V.

ശ

V1.1, 2002-11-26

Preliminary Datasheet

10

V1.1, 2002-11-26

Intineon

Circuit Description

TLE 7209R

Circuit Description

2.4.2.2 Characteristics of the SPI Interface

- When DMS is > 3,5V, the SPI is active, independently of the state of EN or DIS. During active reset conditions (DMS < 3,5V) the SPI is driven into its default state. When reset becomes inactive, the state machine enters into a wait-state for the next instruction.
 If the slave select signal at CSN is inactive (high), the state machine is forced to enter
- the wait-state, i.e. the state machine waits for the following instruction. 3. During active (low) state of the select signal CSN the falling edge of the serial clock
- signal SCK will be used to latch the input data at SDI. Output data at SDO are driven with the rising edge of SCK (see timing diagram **Figure 13**)
- 4. Chip-address:

In order to establish the option of extended addressing the uppermost two bits of the instruction-byte (i.e the first two SDI-bits of a Frame) are reserved to send a chip-address. To avoid a bus conflict the output SDO must stay high impedant during the addressing phase of a frame (i.e. until the address-bits are recognized as valid chip-address). If the chip-address does not match, the data at SDI will be ignored and SDO remains high impedant for the complete frame. See also **Figure 7**

Verification byte:

Simultaneously to the receipt of an SPI instruction TLE 7209R transmits a check byte via the output SDO to the controller. This byte indicates normal or abnormal operation of the SPI. It contains an initial bit pattern and a flag indicating an invalid instruction of the previous access.

- Because only read access is used in the TLE 7209R, the SDI data-bits (2nd byte) are not used
- 7. Invalid instruction/access

An instruction is invalid, if an unused instruction code is detected (see tables with SPI instructions). In case an unused instruction code occurred, the data byte "ff_{hex}" (no error) will be transmitted after having sent the verification byte. This transmission takes place within the same SPI-frame that contained the unused instruction byte. In addition any transmission is invalid if the number of SPI clock pulses (falling edge) counted during active CSN differs from exactly 16 clock pulses. If an invalid instruction is detected, bit TRANS_F in the following verification byte (next SPI transmission) is set to HIGH. The TRANS_F bit must not be cleared before it has been sent to the micro controller.

Figure 7 bus-arbitration by chip-address

1

V1.1, 2002-11-26

Preliminary Datasheet

12

V1.1, 2002-11-26

Circuit Description

TLE 7209R

Circuit Description

2.4.2.3 SPI-Communication

definition of these bytes is given in the subsequent sections. output bits consist of the verification-byte and the data-byte (see also Figure 8). The The 16 input bits consist of the SPI-instruction byte and a second, unused byte. The 16

Figure 8 SPI communication

2.4.2.4 SPI instruction

of the TLE 7209R is 00. During read-access, the output data according to the register are transmitted to SDO during the same SPI frame. means, the output data corresponding to an instruction byte sent during one SPI frame requested in the instruction byte are applied to SDO within the same SPI frame. That The uppermost 2 bit of the instruction byte contain the chip-address. The chip-address

Table 3 **SPI Instruction Format**

MSB							
7	6	5	4	3	2	1	0
0	0	INSTR4	INSTR4 INSTR3 INSTR2 INSTR1 INSR0 INSW	INSTR2	INSTR1	INSRO	WSNI
Table 4	SPI ins	truction D	SPI instruction Description				
Bit	Name		Description	on			
7,6	CPAD1,0		Chip Addr	Chip Address (has to be '0', '0')	o be '0', '0')		
5-1	INSTR (4-0)	-0)	SPI instru	SPI instruction (encoding)	oding)		
D							

						VOVI
Table 4	SPI inst	ruction D	SPI instruction Description			
Bit	Name		Description	on		
7,6	CPAD1,0		Chip Addr	ess (has to	Chip Address (has to be '0', '0')	
5-1	INSTR (4-0)	0)	SPI instru	SPI instruction (encoding)	oding)	
0	INSW		Even parity	ły		

Preliminary Datasheet

Ω

V1.1, 2002-11-26

Table 5 SPI Instruction-Bytes Enconding

SPI Instruction Encoding	Encoding			Description
	bit 7,6	bit 5-1	Bit 0	
	CPAD1,0	CPAD1,0 INSTR(4-0)	WSNI	
RD_IDENT	00	00000	0	read identifier
RD_VERSION	00	00001	-	read version
RD_DIA	00	00100	1	read DIA_REG
I	00	all others	x	unused, TRANS_F is set to high, ff_hex is sent as data bit
1	all others	XXXXX	×	invalid address, SDO remains tristate during entire SPI frame

2.4.2.5 Verification Byte

Table 6 Verification Byte Format

MSB	W		l					
7		6	5	4	3	2	1	0
Z		Z	-	0	-	0	-	TR,

Table 7	Verificat	Verification Byte Description
Bit	Name	Description
0	TRANS_F	Bit = 1: error detected during previous transfer Bit = 0: previous transfer was recognized as valid
1		Fixed to High
N		Fixed to Low
З		Fixed to High
4		Fixed to Low
5		Fixed to High
6		send as high impedance
7		send as high impedance

The default value after power-up at DMS of the TRANS_F bit is L (previous transfer valid)

14

Preliminary Datasheet

V1.1, 2002-11-26

Circuit Description

2.4.2.6 Data-byte: Diagnostics/Encoding of Failures (Register DIA_REG, SPI Instruction RD_DIA)

Table 8 DIA_REG Format

MSB							
7	0	U	4	ω	2	-	0
EN/DIS	OT	CurrRed	CurrLim	DIA21	DIA20	DIA11	DIA10

Table 9 DIA_REG Description

Default v	alue after r	Default value after reset is FF _{hex} . Access by controller is read only	
Bit	Name	Description	latch
			behavior
0	DIA 10	Diagnosis-Bit1 of OUT1	see below
-	DIA 11	Diagnosis-Bit2 of OUT1	see below
2	DIA 20	Diagnosis-Bit1 of OUT2	see below
ω	DIA 21	Diagnosis-Bit2 of OUT2	see below
4	CurrLim	is set to "0" in case of current limitation.	latched
ហ	CurrRed	is set to "0" in case of temperature dependent current limitation	latched
6	ОТ	is set to "0" in case of over temperature	latched
7	EN/DIS	is set to "0" in case of EN = L or DIS = H	not latched

Т	Г	Т	EN
Н	L	L	DIS
0	0	1	DIA_REG_

EN	DIS	DIA_REG_7
Т	L	4
Г	L	0
Т	I	0
F	I	0

TLE 7209R

Circuit Description

Table 10 Encoding of the Diagnostic Bits of OUT1 and OUT2

DIA21	DIA20	DIA11	DIA10	DIA21 DIA20 DIA11 DIA10 Description	latch behavior
		0	0	Short circuit over load (SCOL)	latched
	-	0	1	Short circuit to battery on OUT1 (SCB1)	latched
'	•		0	Short circuit to ground on OUT1 (SCG1) latched	latched
	-	1	1	No error detected on OUT1	-
0	0	1	1	Open load (OL)	latched
0	1	-	-	Short circuit to battery on OUT2 (SCB2)	latched
-	0	-	-	Short circuit to ground on OUT2 (SCG2) latched	latched
-	1	-	•	No error detected on OUT2	•
0	0	0	0	Under Voltage on Pin Vs	not latched

Failure Encoding in case of multiple faults

case, errors are encoded according to the following priority list. bits can not be displayed simultaneously due to the encoding scheme that is used. In this If multiple faults are stored in the failure register, the faults that are encoded in the DIAxx

- Priority 1: Under Voltage (please note that after removal of Under Voltage, the original error will be restored, see below)
- Priority 2: Short circuit across the load
- Priority 3: all other short circuits
- Priority 4: open load

in the encoded SPI message If a failure of higher priority is detected, the failures of lower priority are no longer visible

Fault storage and reset of the Diagnosis Register DIA_REG

On the following conditions DIA_REG is reset:

- With the rising edge of the CSN-Signal after the SPI-Instruction RD_DIA. This reset only takes place if the correct number of 16 CLK pulses has been counted.
- When the voltage on DMS exceeds the threshold for detecting SPI-Mode (after under Voltage condition).

under Voltage level, the Bits of DIA_REG are restored (when DMS > 3,5V). Under Voltage on Vs (< 5,0V) sets Bit 0.... Bit 3 of DIA_REG to 0000. If Vs rises over the

does not reset the DIA_REG register. A rising edge on EN or a falling edge on DIS re-activates the output power-stages, but

Preliminary Datasheet

16

V1.1, 2002-11-26

Preliminary Datasheet

5

V1.1, 2002-11-26

Circuit Description

TLE 7209R

Circuit Description

2.4.2.7 Data-byte: Device Identifier and Version (SPI instructions RD_IDENT and RD_VERSION)

RD_VERSION as described in Section 2.4.2.4. two numbers are read-only accessible via the SPI instructions RD_INDENT and and features plug & play functionality depending on the systems software release. The The IC's identifier (device ID) and version number are used for production test purposes

The device ID is defined to allow identification of different IC-Types by software and is fixed for the TLE 7209R.

and a lower 4 bit field utilized to identify the actual mask set revision (MSR). bit field reserved to define revisions (SWR) corresponding to specific software releases updated with each redesign of the TLE 7209R. The contents is divided into an upper 4 The Version number may be utilized to distinguish different states of hardware and is

Both (SWR and MSR) will start with 0000b and are increased by 1 every time an according modification of the hardware is introduced.

Reading the IC Identifier (SPI Instruction: RD_IDENT):

MSB Table 11 **Device Identifier Format**

ID7	7
ID6	6
ID5	5
ID4	4
ID3	3
ID2	2
ID1	1
ID0	0

Table 12 **Device Identifier Description** כ

Bit	Name	Description
70	device-ID(70)	ID-No.: 10100010

Reading the IC version number (SPI Instruction: RD_VERSION):

Table 13	
IC version number Format	

SWR3	7	MSB
SWR2	6	
SWR1	σ	
SWR0	4	
MSR3	3	
MSR2	2	
MSR1	1	
MSRO	0	

Table 14 IC version number Description

Bit	Name	Description
74	SWR(30)	This register is set to 0
30	MSR(30)	Version corresponding to Mask set

Preliminary Datasheet

17

V1.1, 2002-11-26

2.4.2.8 **Open-Load Diagnosis**

is Disabled (EN = L or DIS = H). The detection mechanism is explained in Figure 9. The resulting overall diagnostic truth-table is shown as Table 15 according diagnostic information can be read out via the SPI diagnostic register. The Open-load diagnostic in OFF-state is possible in the SPI-mode (DMS = 5 V) if the device

Figure 9

Functional block diagram of open-load detection

V1.1, 2002-11-26

Downloaded from Arrow.com.

Preliminary Datasheet

18

Circuit Description

Table 15 **Diagnosis Truth Table for open load detection**

Output stage inactive, EN = low or DIS = high, DMS > 4.5 V

	OUT1 OUT2	OUT2	
Load available	Н	I	
Open Load	Н	Г	OL detected
SC -> GND on OUT1 and Open Load L	Г	Г	OL not detected – double Fault
SC -> GND on OUT2 and Open Load H	Н	L	OL detected
SC -> $V_{\rm S}$ on OUT1 and Open Load	Н	L	OL detected
SC -> $V_{\rm S}$ on OUT2 and Open Load	н	Т	OL not detected – double Fault

TLE 7209R

Electrical Characteristics

Electrical Characteristics

ω

μ **Absolute Maximum Ratings**

3.1	Absolute Maximum Ratings	num R	atings	•.		
Pos.	Parameter	Sym-	Limit	Limit Values	Unit	Test Conditions
		bol	min.	max.		
3.1.1	Junction temperature	T_{j}	-40	+150	°	I
			Ι	+175	°C	dynamic: $t < 1$ s
3.1.2	Storage temperature	T_s	-55	+125	°C	I
3.1.3	Ambient temperature	T_{a}	-40	+125	°	I
3.1.4	Supply voltage	$V_{\sf S}$	<u>ר</u>	40	<	static destruction proof
			-'2	40	<	dynamic destruction proof t < 0.5 s (single pulse, $T_{j} < 85 \text{ °C}$)
3.1.5	Voltage at logic	V	-0.5	7	<	I
	inputs IN1, IN2, DIS, EN, SDI, SCK/SF, DMS					
3.1.6	Voltage at logic input CSN	V	-0.5	40	<	
3.1.7	Voltage at logic output SDO	V	-0.5	$V_{\rm DMS}$ + 0.5	۷	I
3.1.8	Voltage at SF in status-flag-mode	V_{SF}	-0.5	7	<	<i>R</i> ≥ 10 kΩ
3.1.9	Voltage at VsCP	V_{CP}	V _S - 0.5	V _S + 0.5	<	1
3.1.10	ESD voltage human	V_{ESD}	T	-	2kV	all pins
3.1.11	body model (MIL STD 883D / ANSI EOS\ESD S5.1)	V_{ESD} . Out	I	I	8kV	only pins 6, 7, 14 and 15 (outputs)
					:	•

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

19

V1.1, 2002-11-26

V1.1, 2002-11-26

20

Electrical Characteristics

Operating Range

3.2	Operating Range	ge				
Pos.	Parameter	Sym-	Limit	Values	Unit	Limit Values Unit Remark
		bol	min.	max.		
3.2.1	Supply Voltage	V_{S}	5	28	۷	
3.2.2	DMS Supply Voltage	V_{DMS}	4.5	5.5	۷	Device in SPI-mode
3.2.3	PWM frequency	f	Ι	30	кНz	May be limited to lower values
						in the application due to switching losses
3.2.4	Junction Temperature T_J	T_{J}	-40	150	°C	
Note:	In the operating rang	ge, the	circuit	functio	nality	Note: In the operating range, the circuit functionality as described in the circuit

description is fulfilled. ,

з. З	Thermal Resistance	tance				
3.3.1	3.3.1 Junction-case	R_{thJC}	Ι	1.5	K/W	Ι
3.3.2	3.3.2 Junction-ambient	R_{thJA}	I	50	КW	minimal footprint

TLE 7209R

Electrical Characteristics

3.4 **Electrical Characteristics**

5V < $V_{\rm S}$ < 28V; – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

	Pos.
	Parameter
	Symbol
min. t	Limi
typ. max.	Limit Values
	Unit
	Test Conditions

Power Supply

$f = 0$ Hz, $I_{OUT} = 0$ A	mA	20	Ι	Ι			
f = 20 kHz, I_{OUT} = 0	mA	30	-	Ι	$I_{\sf UB}$	Supply current	3.4.2
	۷	5	4.7	-	$V_{\sf UV}$ off	Under voltage at V_{S}	3.4.1

Logic Inputs IN1, IN2, DIS, EN

3.4.7	3.4.6	3.4.5	3.4.4	3.4.3
pull-down current EN	pull-up current IN1, IN2, DIS	Input hysteresis	Input "low"	Input "high"
Iн	IIL	$V_{IH}Y$	V_{IL}	V_{IH}
I	-200	0.1	-	2
I	-125	Ι	-	Ι
100	Ι	0.6	1	Ι
μA	μA	۷	۷	۷
$\mu A U \ge 2 V$	$\mu A \qquad U \leq 1 V$	Ι	I	I

Power Outputs OUT1, OUT2

3.4.14	Note: F	-	3.4.13		3.4.12	3.4.11	3.4.10		3.4.9	Current	3.4.8
Leakage current	Reactivation time is guaranteed by design	internal shut down	Reactivation time after	current	Short circuit detection	Blanking time	Switch-off time		Switch-off current	Current limitation: Peak value controlled, load $L = 0.8 \dots 5$ mH in series with $R = 0.8 \dots 1.8 \Omega$	Switch on resistance
I	anteed by c		t		I/OUK	ťb	ta		١٢٢	ontrolled, lo	I
I	tesign		-		8	8	8	-	5.5	ad $L = 0$	I
Ι			-		I	11.5	14	2.5	6.6).8 5	I
200			200		20	15	22	-	7.7	mH in s	300
μA		-	sή		A	sη	sή	A	A	eries w	mΩ
Output stage switched off		overtemperature shut down to reactivation of the output stage	Overcurrent- or		I	-	Ι	T _j < 175 °C	-40 °C < T _j < 165 °C	ith $R = 0.8 1.8 Ω$	$R_{\rm OUT-UB}, R_{\rm OUT-GND}$ $V_{\rm S}$ > 5 V

V1.1, 2002-11-26

Preliminary Datasheet

22

V1.1, 2002-11-26

Preliminary Datasheet

2

TLE 7209R

Electrical Characteristics

3.4 Electrical Characteristics (cont'd)

5V < $V_{\rm S}$ < 28V; – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Pos.	Parameter	Symbol	Lir	Limit Values	les	Unit	Unit Test Conditions
			min.	typ. max.	max.		
3.4.15	3.4.15 Free-wheel diode forward voltage	U_{D}	Ι	Ι	2	۷	<i>I</i> _{ОUT} = 3 А
3.4.16	3.4.16 Free-wheel diode reverse recovery time	trr	Ι	Ι	100 ns	ns	Ι
Note:	Note: reverse recovery time is guaranteed by design	guaranteed	by desi	gn			

Output Status-flag, Open Drain Output DMS < 0.8 V

		<i>L</i>			00	Δ	
3.4.17	(SF not set)	ISF	Ι	Ι	20	μA	A C = 3SA
3.4.18	out "low"	ISF	300	Ι	-	μA	$V_{\rm SF} = 1 \rm V$
	(SF set)		100	I	Ι	μA	$V_{\rm SF}$ = 0.5 V

Timing

- 2 µs		$ -$ 1 ms $V_{\rm S}$ = 0 stage
	I	1 1
	s	si s
<i>I</i> _{OUT} = 3 A OUT1L> OUT2L>	¹ _{OUT} = 3 A OUT1L> OUT OUT2L> OUT DIS> OUTn, EN> OUTn	$V_{OUT} = 3 \text{ A}$ $OUT1L = 0 \text{ OUT1}H,$ $OUT2L = 0 \text{ OUT2}H$ $DIS = 0 \text{ OUT}n,$ $EN = 0 \text{ OUT}n$ $V_{S} = \text{ on } - \text{ output}$ stage active

Electrical Characteristics

3.4 Electrical Characteristics (cont'd)

5V < $V_{\rm S}$ < 28V; – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

Pos.
Parameter
Symbol
Lim
imit Values
es
Unit
Test Conditions

Input SCK, SPI Clock Input

•							
3.4.25	3.4.25 Low Level	$U_{\sf SCKL}$	Ι	-	1	۷	-
3.4.26	3.4.26 High Level	U_{SCKH}	2	-	-	۷	-
3.4.27	3.4.27 Hysteresis	$\Delta U_{\sf SCK}$ 0.1	0.1	Ι	0.4	۷	I
3.4.28	Input Capacity	C_{SCK}	Ι	Ι	10	рF	-
3.4.29	3.4.29 Input Current	$-I_{\sf SCK}$	Ι	20	50	μA	Pull-up current source
							connected to V_{DD}

Input CSN, Chip Select Signal

3.4.30	3.4.30 Low Level	U_{CSNL}	Ι	Ι	1	۷	TLE 7209R is selected
3.4.31	3.4.31 High Level	U_{CSNH}	2	-	-	۷	Ι
3.4.32	Hysteresis	$\Delta U_{\sf CSN}$	0.1	-	0.4	۷	-
3.4.33	3.4.33 Input Capacity	C_{CSN}	-	-	10	рF	Ι
3.4.34	3.4.34 Input Current	$-I_{CSN}$	I	20	50	μA	Pull up current source
							connected to V_{DD}

Input SDI, SPI Data Input

3.4.39	3.4.38	3.4.37 H	3.4.36 H	3.4.35
3.4.39 Input Current	Input Capacity	Hysteresis	High Level	Low Level
-I _{SDI}	C_{SDI}	ΔU_{SDI}	U_{SDIH}	U_{SDIL}
I	I	0.1	N	Ι
20	1	I	I	Ι
50	10	0.4	I	1
μA	₽F	<	<	<
Pull up current source connected to V _{DD}	1	I	Ι	I

Preliminary Datasheet

V1.1, 2002-11-26

22

Preliminary Datasheet

24

V1.1, 2002-11-26

TLE 7209R

Electrical Characteristics

3.4 Electrical Characteristics (cont'd)

5V < $V_{\rm S}$ < 28V; – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

min. tvp. max.
800

Output SDO Tristate Output of the TLE 7209R (SPI output);

3.4.40	3.4.40 Low Level	V_{SDOL}	-	Ι	0.4	<	$I_{SDO} = 2 \text{ mA}$
3.4.41	3.4.41 High Level	V_{SDOH}	$V_{ m DMS}$ - 0.75	I	Ι	۷	$I_{SDO} = -2 \text{ mA}$
3.4.42	3.4.42 Capacity	$C_{\sf SDO}$	-	I	10	pF	Capacity of the pin in tristate
3.4.43	3.4.43 Leakage Current	I_{SDO}	-10	Ι	10	μA	In tristate

Note: All in- and output pin capacities are guaranteed by design

Input DMS Supply-Input for the SPI-Interface and Selection Pin for SPI- or SF-Mode

3.4.45		3.4.44
Input Current		Input Voltage
IDMS	V_{DMS}	V_{DMS}
I	-	3.5
I	-	I
10	0.8	I
mA	۷	<
SPI-Mode	Status-Flag-Mode	SPI-Mode

Open-Load Diagnosis

3.4.46	3.4.46 Diagn. Threshold	V_{OUT1}	0.8	I	I	٧	DMS > 4.5 V, EN <
	Load is available	V_{OUT2}	0.8	Ι	Ι	٧	0.8 V or DIS > 4.5 V
	Load is missing	V_{OUT1}	1	Ι	$V_{\sf S}$	۷	
		V_{OUT2}	Ι	Ι	0.8	۷	
3.4.47	3.4.47 Diagn. Current	I _{OUT2}	700	1000	1400		DMS > 4.5 V, EN <
		-Iout1	1000	1500	1500 2000 μA		0.8 V or DIS > 4.5 V
3.4.48	3.4.48 Tracking Diag. C	I	1.2	1.5 1.7	1.7	I	Iout1/Iout2

0.4.40	0.4.40 Diagin. Theshold	VOUT1 U.U	0.0	I	I	۷	
	Load is available	V_{OUT2}	0.8	I	I	<	0.8 V or DIS > 4.5 V
	Load is missing	V_{OUT1}	-	I	$V_{\sf S}$	<	
		V_{OUT2}	I	I	0.8	<	
3.4.47	3.4.47 Diagn. Current	I _{OUT2}	700	1000	1400	μA	DMS > 4.5 V, EN <
		- <i>I</i> оит1	1000	1500	1500 2000 μA	μA	0.8 V or DIS > 4.5 V
3.4.48	Tracking Diag. C	-	1.2	1.5	1.7	Ι	Iout1/Iout2
3.4.49	3.4.49 Delay Time	ťD	30	I	100	ms	1

Load is available	VOUT2	0.8	I	I	<
Load is missing	J VOUT1	1	I	$V_{\sf S}$	۷
	V_{OUT2}	I	I	0.8	۷
3.4.47 Diagn. Current	IOUT2	700	1000	1400	μA
	- <i>I</i> оит1	1000		2000	μA
3.4.48 Tracking Diag. C	I	1.2	1.5	1.7	-
3.4.49 Delay Time	^t D	30	Ι	100	ms

Infineon technologies

Electrical Characteristics

3.4 Electrical Characteristics (cont'd)

5V < $V_{\rm S}$ < 28V; – 40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

	Pos. Paramete
	neter
	Symbol
min.	Lin
typ.	Limit Values
max.	
	Unit
	Test Conditions

SPI Timing (see Figure 13)

SPI Tim	SPI Timing (see Figure 13)						
3.4.50	Cycle-Time (1)	$t_{\rm cyc}$ (1)	200	I	I	ns	referred to master
3.4.51	Enable Lead Time	t_{lead} (2)	100	Ι	Ι	ns	referred to master
3.4.52	Enable Lag Time	t_{lag} (3)	150	Ι	I	ns	referred to master
3.4.53	Data Valid	$t_{\rm v}$ (4)	I	I	40	ns	$C_{L} = 40 \text{ pF}$
			Ι	I	150	ns	$C_{\rm L} = 200 \rm pF$
							referred to TLE 7209R
3.4.54	Data Setup Time	t_{su} (5)	50	Ι	Ι	ns	referred to master
3.4.55	Data Hold Time	t _h (6)	20	-	-	ns	referred to master
3.4.56	Disable Time	t _{dis} (7)	Ι	Ι	100	ns	referred to TLE 7209R
3.4.57	Transfer Delay	t _{dt} (8)	150	-	-	ns	referred to master
3.4.58	Select time	t _{SCKH} (9)	50	I	I	ns	referred to master
3.4.59	Access time	^t scкL (10)	8.35	Ι	Ι	μs	referred to master
3.4.60	Clock inactive before chips elect becomes valid	(11)	200	I	I	ns	I
3.4.61	Clock inactive after chips elect becomes invalid	(12)	200	I	I	ns	1
Temper	Temperature Thresholds						
3.4.62	Start of current limit	T_{ILR}	150	Ι	Ι	°	

.4.62	Start of current limit reduction	T_{ILR}	150	I	Ι	°Ĉ
.4.63	1.4.63 Thermal Shutdown	$T_{\rm SD}$	175	I	Ι	°Ĉ

ω

Note: Temperature thresholds are guaranteed by design

Preliminary Datasheet

26

V1.1, 2002-11-26

V1.1, 2002-11-26

Preliminary Datasheet

25

Timing Diagrams

Timing Diagrams

4

Figure 10 **Output Delay Time**

Preliminary Datasheet

27

V1.1, 2002-11-26

Figure 11 **Disable Delay Time**

Intineon technologies

TLE 7209R

Timing Diagrams

Figure 12 **Output Switching Time**

Figure 13 SPI-timing

28

V1.1, 2002-11-26

Application

Application Examples for Over-Voltage- and Reverse-Voltage Protection

в

V1.1, 2002-11-26

Package Outlines

Preliminary Datasheet SMD = Surface Mounted Device Data Book "Package Information Package outlines for tubes, trays etc. are contained in our Sorts of Packing $\underline{\omega}$

Dimensions in mm

V1.1, 2002-11-26

Edition 2002-11-26

D-81541 München, Germany Published by Infineon Technologies AG, St.-Martin-Strasse 53,

© Infineon Technologies AG 2002. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

Infineon Technologies is an approved CECC manufacturer. circuits, descriptions and charts stated herein. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain the human body. be endangered. and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may