
 э！！sou6е！

 uo！！d！̣ンsəa ןeuo！ןoun」

Type	Ordering Code	Package
TLE 7209R	on request	P－DSO－20－12

әбехэед ләмод 乙L－OZ－OSG－d •

 Operating－frequency up to 30 kHz Logic－inputs TTL／CMOS－compatible

Continuos DC load current $3.5 \mathrm{~A}\left(T_{\mathrm{C}}<100^{\circ} \mathrm{C}\right)$
Output current limitation at typ． $6.6 \mathrm{~A} \pm 1.1 \mathrm{~A}$

 $1.1 \quad$ Features」əルーコ

Overview

7 A H－Bridge for DC－Motor Applications

[^0]

мә！лләло

[^1]Table $2 \quad$ Functional Truth Table

 | 14. Over current | X | X | X |
| :--- | :--- | :--- | :--- | 13. Over temperature 12. Under Voltage 11. Current limit. activ 9. DIS disconnected 8. IN2 disconnected 7. IN1 disconnected 6. Enable

 Inputs IN1, IN2 and DIS have an internal pull-up. Input EN has an internal pull-down.
Functional Truth Table Enable inputs DIS and EN. respectively. In addition, the outputs can be disabled (set to tristate) by the Disable and outputs OUT1 and OUT2 are set to High or Low by the parallel inputs IN1 and IN2, The bridge is controlled by the Inputs IN1, IN2, DIS and EN as shown in Table 2. The

For $165^{\circ} \mathrm{C}<T_{\mathrm{j}}<175^{\circ} \mathrm{C}$ the current limit decreases from $I_{\mathrm{L}}=6.6 \mathrm{~A} \pm 1.1 \mathrm{~A}$ to
$I_{\mathrm{L}}=2.5 \mathrm{~A} \pm 1.1 \mathrm{~A}$ as shown in Figure 4

Circuit Description

460ZL ヨา1

If short circuit messages from high－and low－side switch occur simultaneously within a
delay time of typically $2 \mu \mathrm{~s}$ ，the error bit＂Short Circuit Over Load＂，SCOL is set． 2．3．3 Short circuit across the load
рәұәәџәр

to Battery on output 1 （2）＂，SCB1（SCB2）is set．
 әәs）рәңәәəәр s ио！！эәәәр и！

 Due to the chopper current regulation，the low－side switches are already protected s_{Λ} о ұ！！！
 цочS„，ఛ！

 puno by the following measures： The TLE 7209R is protected against short circuits，overload and invalid supply Voltage

uo！！d！ıכsəa

Figure 6 SPI block－diagram

 The first two bits of an instruction may be used to establish an extended device－ select signal（High）the data output SDO goes into tristate． （Serial Clock Input）the SPI clock is provided by the master．In case of inactive slave master．SDI is the data input（Slave In），SDO the data output（Slave Out）．Via SCK
 SDO） controller provides the master function．The maximum baud rate is 2 MBaud（200pF on

 әэセцәңul－IdS レ＇でも゙て

（ $\Lambda \mathrm{S}=\mathrm{SWQ}$ ）әpow－IdS

でも゙て

 uo！！d！ıכsəa כ！

uo！！d！ıンsəa ！！nכı！

Table 3 SPI Instruction Format							
MSB							
7	6	5	4	3	2	1	0
0	0	INSTR4	INSTR3	INSTR2	INSTR1	INSR0	INSW
Table 4 SPI instruction Description							
Bit	Name		Description				
7，6	CPAD1，0		Chip Address（has to be＇0，＇0＇）				
5－1	INSTR（4－0）		SPI instruction（encoding）				
0	INSW		Even parity				

are transmitted to SDO during the same SPI frame． requested in the instruction byte are applied to SDO within the same SPI frame．That of the TLE 7209R is 00．During read－access，the output data according to the register The uppermost 2 bit of the instruction byte contain the chip－address．The chip－address 2．4．2．4 SPI instruction
Figure 8 SPI communication

CSN							
SDI		SPI Instruction	LSB		not used		
SDO	MSB	Verification byte	LSB	MSB	data－byte	LSB	

output bits consist of the verification－byte and the data－byte（see also Figure 8）．The
definition of these bytes is given in the subsequent sections．

әэиерәdu！¢চ！！se puәs							L
әэuepədm！цচ！ч se puәs							9
							G
моך 0 아 pex！」							†
							ε
моך 아 Pex！」							乙
46！！ 아 pex！\ddagger							1
 						J^{-}SNVY 1	0
uo！̣d！ıこsəa						әuen	$1!9$
							＜өpqe＞
$\rfloor^{-} \mathrm{SN} \forall \mathrm{Y} \perp$	1	0	1	0		Z	Z
0	1	乙	ε	†		9	L
8SW							
							9 ə¢¢1

2．4．2．5 Verification Byte

su！eшәд OOS ‘ssəıppe p！！eлu！	x	XXXXX	Sぇəцłо ॥е	－
！！ 9 еұер se ұuәs s！хәу－ 	x	sıәц10 ॥е	00	－
Эヨบ ${ }^{-}$VIO peәд	1	00100	00	$\forall 10^{-}$वप
ио！sıə＾реәл	1	10000	00	NOISY \wedge^{-}－${ }^{\text {a }}$
лә！！！\downarrow ¢р！реәл	0	00000	00	1NヨOI－${ }^{-}$
	MSNI $07!8$	$\begin{array}{r} (0-\downarrow) \cup \perp S N I \\ -G ~+!q \end{array}$	$\begin{array}{r} 0 ‘ \vdash \square \forall d O \\ 9<~ \end{array} \frac{1}{}$	
no！̣d！̣asea			6u！posuヨ	uo！fonılsulds

uo！̣d！ıכsəa t！nכן！

Bit	Name	Description	latch behavior		
0	DIA 10	Diagnosis－Bit1 of OUT1	see below		
1	DIA 11	Diagnosis－Bit2 of OUT1	see below		
2	DIA 20	Diagnosis－Bit1 of OUT2	see below		
3	DIA 21	Diagnosis－Bit2 of OUT2	see below		
4	CurrLim	is set to＂0＂in case of current limitation．	latched		
5	CurrRed	is set to „0＂in case of temperature dependent current limitation	latched		
6	OT	is set to＂0＂in case of over temperature	latched		
7	EN／DIS	is set to „0＂in case of EN $=$ L or DIS $=\mathrm{H}$	not latched		Table 9 DIA＿REG Description
:---					
Default value after reset is FF $_{\text {hex }}$ ．Acc					

	6	5	4	3	2	1	0
EN／DIS	OT	CurrRed	CurrLim	DIA21	DIA20	DIA11	DIA10

9SW Table 8 DIA＿REG Format
（Register DIA＿REG，SPI Instruction RD＿DIA）
Data－byte：Diagnostics／Encoding of Failures
$9 * て ゙ も ゙ て ~$

A rising edge on EN or a falling edge on DIS re－activates the output power－stages，but
does not reset the DIA＿REG register． under Voltage level，the Bits of DIA＿REG are restored（when DMS＞3，5V）．

 On the following conditions DIA＿REG is reset：

Fault storage and reset of the Diagnosis Register DIA＿REG in the encoded SPI message If a failure of higher priority is detected，the failures of lower priority are no longer visible －Priority 3：all other short circuits
－Priority 4：open load －Priority 2：Short circuit across the load
－Priority 1：Under Voltage（please note that after removal of Under Voltage，the original
\quad error will be restored，see below） case，errors are encoded according to the following priority list． bits can not be displayed simultaneously due to the encoding scheme that is used．In this If multiple faults are stored in the failure register，the faults that are encoded in the DIAxx Failure Encoding in case of multiple faults
uo！̣d！ıכsəa t！nכן！

7．．．0 device－ID（7．．．0）ID－No．： 10100010 | Bit | Name | Description |
| :--- | :--- | :--- | Table 12 Device Identifier Description Reading the IC Identifier（SPI Instruction：RD＿IDENT）：

Table $\mathbf{1 1}$

MSB	Device Identifier Format				
7	6	5	4	3	2
ID7	ID6	ID5	ID4	ID3	ID2

according modification of the hardware is introduced． and a lower 4 bit field utilized to identify the actual mask set revision（MSR）． updated with each redesign of the TLE 7209R．The contents is divided into an upper 4
bit field reserved to define revisions（SWR）corresponding to specific software releases The Version number may be utilized to distinguish different states of hardware and is
updated with each redesign of the TLE 7209R．The contents is divided into an upper 4 The device ID is defined to allow identification of different IC－Types by software and is
fixed for the TLE 7209R． two numbers are read－only accessible via the SPI instructions RD＿INDENT and
RD＿VERSION as described in Section 2．4．2．4． and features plug \＆play functionality depending on the systems software release．The The IC＇s identifier（device ID）and version number are used for production test purposes

2．4．2．7 Data－byte：Device Identifier and Version

 s！sou6e！a peof－uәdo $\quad 8^{\prime}$ で七＇て
uo！！d！uvsəa ！！nכג！

Table 15 Diagnosis Truth Table for open load detection			
Output stage inactive，EN＝low or DIS＝high，DMS $>4.5 \mathrm{~V}$			
	OUT1	OUT2	
Load available	H	H	
Open Load	H	L	OL detected
SC－＞GND on OUT1 and Open Load	L	L	OL not detected－double Fault
SC－＞GND on OUT2 and Open Load	H	L	OL detected
SC $->V_{\text {S }}$ on OUT1 and Open Load	H	L	OL detected
SC $->V_{\text {S }}$ on OUT2 and Open Load	H	H	OL not detected－double Fault

uo！！d！uכsod ！！nכי！！
460てL ヨา1

（słndłno） GI pue tr＇L＇9 suịd Kjuo	Λ ィ8	－	－	$\begin{array}{r}\text { ıno } \\ --\mathrm{as} \\ \hline\end{array}$	（ - －GS OSヨ\SOヨ ISNV／ロ\＆88 OS רIW）ןəрои Кроя	ドドを
suid „е	\wedge ソ乙	－	－	${ }^{\text {as }} \Lambda$	uewny әбீұן＾ОSヨ	0ドレ・
－	\wedge	$\begin{array}{r} \mathrm{S}^{\prime 0} \\ +\mathrm{S}_{\Lambda} \end{array}$	$\begin{array}{r} \mathrm{s}^{0} 0 \\ -\mathrm{s}_{\Lambda} \end{array}$	dO_{Λ}		6＊ $1 \cdot \mathrm{E}$
ЈУ OL＜V	\wedge	L	$\mathrm{S}^{\circ}{ }^{-}$	${ }^{\text {S }}{ }_{\Lambda}$	 	8＊ $1 \cdot \varepsilon$
－	\wedge	$\underset{\mathrm{S}^{\mathrm{S}} \mathrm{SWO}_{\Lambda}^{+}}{+}$	$\mathrm{S}^{\circ} \mathrm{O}^{-}$	Λ	OOS łndıno 	L＇L＇${ }^{\circ}$
	\wedge	Ot	$\mathrm{S}^{\circ}{ }^{-}$	Λ	NSO Łndu！э！	9＊ $1 \cdot \varepsilon$
－	\wedge	L	$\mathrm{S}^{\circ}{ }^{-}$	Λ	SWO ‘ョS／મ્રOS＇IOS ‘Nヨ ‘SIO ‘ZNI ‘＇NI sındu！ 	G＇L＇E
s s.0>1 	\wedge	Ot	乙－	S_{Λ}		ガレ゙と
ృ00גd uo！̣эnısəp э！！ełs	\wedge	Ot	$1-$			
－	O。	Gこ1＋	Ot－	${ }^{\text {e }}$ L		$\varepsilon \cdot \downarrow \cdot \varepsilon$
－	O。	Gこ1＋	GS－	${ }^{\text {s }} L$		でドと
s $1>1$ ：o！meuKp	O。	GL1＋	－	${ }^{\text {！}}$ L		$1 \cdot \square$
－	O。	OG1＋	Ot－			
suo！t！puoう 1501	t！un	＇хещ	＇u！w		ләңəuraed	＇SOd
		senje＾\！				

sбu！ңey wnu！xew əən｜Osq甘

46022 ヨา1

21

V1．1，2002－11－26

N

V1．1，2002－11－26

3．4．10 Switch－off time

 3．4．8 | Switch on resistance | - | - | - | 300 | $\mathrm{~m} \Omega$ | $\begin{array}{l}R_{\text {OUT－UB }}, R_{\text {OUT－GND }} \\ V_{\mathrm{S}}>5 \mathrm{~V}\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | zıno ‘rıno słndłno дәмоd

$\wedge 乙<\Pi$	$\forall \mathrm{H}$	001	－	－	$\mathrm{H}_{\text {I }}$	$\mathrm{N} \exists$ łueuno umop－ınd	$\angle \bullet \checkmark$ ¢
ヘ15	$\forall \mathrm{rr}$	－	GZL－	002－	71	SIO＇ZNI ‘LNI дuәuno dn－｜｜nd	$9 \cdot \downarrow \cdot \varepsilon$
－	\wedge	90	－	$1 \cdot 0$	$\Lambda^{\text {H }}{ }_{\Lambda}$	s！seupısKı ındul	$\bigcirc{ }^{\text {¢ }} \downarrow$ ¢
－	\wedge	1	－	－	${ }^{71} \Lambda$	＂MOI，，\％ndul	カナナを
－	\wedge	－	－	乙	${ }^{\mathrm{H}} \Lambda$	، 4 ¢6！ 4 ，，7ndu	$\varepsilon \downarrow \downarrow$

Logic Inputs IN1，IN2，DIS，EN

$\forall 0=1 \mathrm{O}_{I}{ }^{\prime} \mathrm{zH} 0=f$	$\forall \mathrm{W}$	02	－	－	an_{I}	дueuno Kiddns	で†＇®
$\forall 0=1 \mathrm{nO}_{I} \mathrm{\prime} \mathrm{zH} \geqslant 0 \mathrm{O}=f$	$\forall \mathrm{u}$	0ε	－	－			
	\wedge	¢	L＇t	－	$\pm \pm 0 \wedge_{\Lambda}$		$1 \cdot \downarrow \cdot$ ¢

Power Supply

$\begin{aligned} & \underset{\sim}{\underset{+}{+}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\stackrel{1}{+}} \\ & \stackrel{\omega}{\omega} \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\omega}{\stackrel{1}{u}} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\dot{O}} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\omega}{\stackrel{+}{+}} \stackrel{+}{+}$
				Kеןəр－ョョО indıno	
$\stackrel{\square}{2}$	1	$\frac{\stackrel{2}{\circ}}{\square}$	$\stackrel{7}{7}$	$\stackrel{\text {－}}{\square}$	－${ }_{\text {－}}$
1	1	I	1	1	1
N	1	1	ω	N	N
1	$\stackrel{ }{ }{ }^{-}$	N	v	0	v
$\bar{\square}$	$\bar{\sigma}$	$\bar{\square}$	$\bar{\omega}$	$\overline{\text { E }}$	$\bar{\omega}$
1					

$\wedge \mathrm{s}^{\circ} \mathrm{O}= \pm \mathrm{s}_{\Lambda}$	$\forall \mathrm{H}$	－	－	001	${ }^{ \pm} \mathrm{S}_{\text {I }}$	（əəs $\lrcorner \mathrm{S}$ ） «MOI，，tndłnO	$81^{\prime}+\varepsilon$
$\wedge 1= \pm S_{\Lambda}$	$\forall{ }^{\prime}$	－	－	00ε			
$\wedge \mathrm{s}= \pm \mathrm{S}_{\Lambda}$	$\forall{ }^{\prime}$	02	－	－	${ }^{ \pm} \mathrm{S}$	（łəs łou \lrcorner S） 	$\angle 1 \cdot \downarrow$＇$\varepsilon$

$5 \mathrm{~V}<V_{\mathrm{S}}<28 \mathrm{~V} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$ ；unless otherwise specified
Pos．

ad_{Λ} 아 pәŋəәииоэ 	$\forall \mathrm{n}$	OG	02	－	${ }_{105}{ }^{-}$	ұuәıınэ ınduı	$6 \underbrace{*} \downarrow$ ¢
－	${ }^{-1}$	01	－	－	Iasj	Kı！	$88^{\circ} \downarrow \cdot \varepsilon$
－	\wedge	∇°	－	1.0	${ }_{108} \cap$	s！səəə¢ KH $^{\text {H }}$	く®＇ャワ
－	\wedge	－	－	乙	${ }^{\operatorname{HIOS}} \cap$	ןəләך цб！	$9 \varepsilon^{*} \downarrow^{\circ} \varepsilon$
－	\wedge	1	－	－	${ }^{\text {lias }} \cap$	əләך моך	¢ $\varepsilon^{\prime} \vdash^{\circ} \varepsilon$

ınduı ełea IdS＇IGS łnduı

${ }^{00} \Lambda$ 아 рәңэәииоэ әכィnos łuәגıno dn ॥nd	$\forall \mathrm{N}$	OG	02	－	$\mathrm{NSO}_{\text {I－}}$	ұuәגnつ ¥nduı	$\downarrow \underbrace{*} \downarrow$ ¢
－	－d	01	－	－	NSO_{\sim}	Kıloedeכ ınduı	
－	\wedge	\checkmark－0	－	10	${ }^{\text {SSO}} \cap \nabla$	s！sәдəıs／H	て¢＇ナー
－	\wedge	－	－	乙	HNSO_{Ω}	ןəләך цচ！${ }^{\text {¢ }}$	
рәңэәә๐ s！ப60ZL ヨา」	\wedge	1	－	－	${ }^{7} \mathrm{NSO}{ }^{\text {a }}$	Əөөך М0ך	$0 \varepsilon^{*} \downarrow$ ¢

Input CSN，Chip Select Signal

3.4 .25	Low Level	$U_{\text {SCKL }}$	-	-	1	V	-
3.4 .26	High Level	$U_{\text {SCKH }}$	2	-	-	V	-
3.4 .27	Hysteresis	$\Delta U_{\text {SCK }}$	0.1	-	0.4	V	-
3.4 .28	Input Capacity	$C_{\text {SCK }}$	-	-	10	pF	-
3.4 .29	Input Current	$-I_{\text {SCK }}$	-	20	50	$\mu \mathrm{~A}$	Pull－up current source connected to V_{DD}

3．4．25	Low Level	$U_{\text {SCKL }}$	-	-	1	V	-

Input SCK，SPI Clock Input

－ 660 Z \exists ㄱ

3．4．46	Diagn．Threshold	$V_{\text {OUT1 }}$	0.8	－	－	V	$\begin{aligned} & \text { DMS }>4.5 \mathrm{~V}, \mathrm{EN}< \\ & 0.8 \mathrm{~V} \text { or DIS }>4.5 \mathrm{~V} \end{aligned}$
	Load is available	$V_{\text {OUT2 }}$	0.8	－	－	V	
	Load is missing	$V_{\text {OUT1 }}$	1	－	$V_{\text {S }}$	V	
		$V_{\text {OUT2 }}$	－	－	0.8	V	
3．4．47	Diagn．Current	IOUT2 －IOUT1	$\begin{array}{\|l\|} \hline 700 \\ 1000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1000 \\ 1500 \end{array}$	$\begin{aligned} & 1400 \\ & 2000 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { DMS }>4.5 \mathrm{~V}, \mathrm{EN}< \\ & 0.8 \mathrm{~V} \text { or DIS }>4.5 \mathrm{~V} \end{aligned}$
3．4．48	Tracking Diag．C	－	1.2	1.5	1.7	－	$I_{\text {OUT } 1} / I_{\text {OUT2 }}$
3．4．49	Delay Time	$t_{\text {D }}$	30	－	100	ms	－

əpow－IdS	Vm	01	－	－	${ }^{\text {SWa }}$ I		St＇ナ＇
	\wedge	8.0	－	－	SWO_{Λ}		

Supply－Input for the SPI－Interface and Selection Pin for SPI－or SF－Mode Note：All in－and output pin capacities are guaranteed by design

$\left\|\begin{array}{l} \omega \\ \stackrel{\rightharpoonup}{\omega} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{A}{N} \end{aligned}$	$\begin{gathered} \omega \\ \stackrel{+}{+} \\ \pm \end{gathered}$	$\left\lvert\, \begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$
	$\begin{aligned} & \hline \stackrel{\otimes}{0} \\ & \text { O} \\ & \stackrel{0}{\gtrless} \\ & \hline \end{aligned}$		（1）
$\overline{\widehat{y}}$	合		－
$\stackrel{\rightharpoonup}{\circ}$	1		1
1	1	1	1
$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	1	\bigcirc
$\overline{5}$	\％	$<$	＜
		$\begin{aligned} & \overline{\mathrm{g}} \\ & 0 \\ & \text { II } \\ & \text { N} \\ & \text { B } \end{aligned}$	

 Output SDO

Temperature Thresholds
 3.4 .62 $\begin{array}{l}\text { Start of current limit } \\ \text { reduction }\end{array}$ $T_{\text {ILR }}$ 150 - - ${ }^{\circ} \mathrm{C}$ 3.4 .63 Thermal Shutdown T_{SD} 175 - - ${ }^{\circ} \mathrm{C}$

－	su	－	－	002	（ट1）	sәшоэәq џəәן sd！ч 	$19^{\prime} \downarrow$ ¢
－	su	－	－	002	（เ）	әодәд әл！！эеи！уэоЮ	09＇ャ＇
	sri	－	－	98\％8	$\begin{gathered} (01) \\ \left.7 \times)_{1}\right) \end{gathered}$	әய！̣ Ssəวэ＊	$69^{\prime} \downarrow$ ¢
	su	－	－	0 S	（6） $\mathrm{H}_{\text {（8）S }}^{1}$		89＇ヶ＇
	su	－	－	OSt	（8）${ }^{\text {Pp }}$ t	Ke｜əの גəృsuex	$\angle s^{\prime} \downarrow$＇
y60ZL ヨา 1 아 рәдәәәд	su	001	－	－	（L） $\mathrm{sf}^{\text {If }} \mathrm{p}_{4}$	әш！$\stackrel{\text { ə｜qes！a }}{ }$	9G＇ヶ＇ε
	su	－	－	02	（9）${ }^{4}$	әس！\perp Ploh ełea	¢s＇ャ¢
	su	－	－	0 G	（c）${ }^{\text {ns }}$	әس！$\frac{1}{\text { dntas elea }}$	カ¢＇ヶ＇
บ60てL ヨาค 아 рәдәəə」 $y \mathrm{~d} 002=7$ ？」d $0 t=7$ ว	su su	$\begin{gathered} \text { OSI } \\ 0 \downarrow \end{gathered}$	－		（t）${ }^{\wedge}$	p！le＾elea	£ ${ }^{\prime} \vdash^{\prime} \varepsilon$
	su	－	－	OSt	（ ε ）${ }^{6 \mathrm{El}_{1}}$		乙S＇ヶ＇
	su	－	－	001	（ट）${ }^{\text {peal }}$	әш！\perp реәך ә｜qеuヨ	
ıәұsеш оұ рәнәјəл	su	－	－	002	（t）$)^{00_{0}}$	（ 1 ）әш！ 1 －әро	0＇＇ヶ＇

SPI Timing（see Figure 13）

Figure 10 Output Delay Time

t
Timing Diagrams

[^2]
sweaбe!a бu!̣!!

Figure 14 Application Example with SPI-Interface

0

uo!!ev!!ddy

[^3]

mu u！suo！suəm！a

səu！！ino әбеуフеd
9
 devices or systems are intended to be implanted in the human body，or to support and／or maintain．and sustain approval of Infineon Technologies，if a failure of such components can reasonably be expected to cause the failure question please contact your nearest Infineon Technologies Office． Due to technical requirements components may contain dangerous substances．For information on the types in sбu！uxem
 ио！иешлоди Infineon Technologies is an approved CECC manufacturer circuits，descriptions and charts stated herein．
 Tharacteristics．

 © Infineon Technologies AG 2002.
All Rights Reserved． Published by Infineon Technologies AG，
St．－Martin－Strasse 53，
D－81541 München，Germany
© Infineon Technologies AG 2002. Edition 2002－11－26 Edition 2002－11－26

[^4]
GPS05791

[^0]: y60ZL ヨา1

[^1]: 460ZL ヨา1

[^2]: Preliminary Datasheet

[^3]: y602L ヨาュ

[^4]: