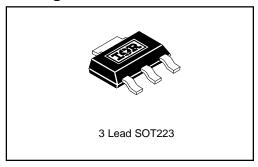
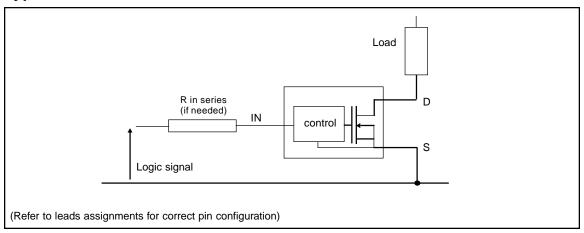
FULLY PROTECTED POWER MOSFET SWITCH

Features

- Over temperature shutdown
- Over current shutdown
- Active clamp
- Low current & logic level input
- E.S.D protection


Description

The IPS041L is a fully protected three terminal SMART POWER MOSFET that features over-current, over-temperature, ESD protection and drain to source active clamp. This device combines a HEXFET® POWER MOSFET and a gate driver. It offers full protection and high reliability required in harsh environments. The driver allows short switching times and provides efficient protection by turning OFF the power MOSFET when the temperature exceeds 165°C or when the Drain current reaches 2A. The device restarts once the input is cycled. The avalanche capability is significantly enhanced by the active clamp and covers most inductive load demagnetizations.


Product Summary

R _{ds(on)}	500mΩ (max)
V _{clamp}	50V
I _{shutdown}	2A
T_{on}/T_{off}	1.5µs

Package

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicates sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to SOURCE lead. ($T_{Ambient} = 25^{\circ}C$ unless otherwise specified). PCB mounting uses the standard footprint with 70 μ m copper thickness.

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V _{ds}	Maximum drain to source voltage	_	47		
V _{in}	Maximum input voltage	-0.3	7	V	
lin, max	Maximum IN current	-10	+10	mA	
Isd cont.	Diode max. continuous current (1)				
	(rth=125°C/W)	_	1.2	Α	
Isd pulsed	Diode max. pulsed current (1)	_	3		
Pd	Maximum power dissipation ⁽¹⁾				
	(rth=125°C/W)	_	1	W	
ESD1	Electrostatic discharge voltage (Human Body)	_	4		C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	kV	C=200pF, R=0Ω, L=10μH
T stor.	Max. storage temperature	-55	150	°C	
Tj max.	Max. junction temperature	-40	150	°C	

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} 1	Thermal resistance with standard footprint		100	_	0000	
R _{th} 2	Thermal resistance with 1" square footprint	1	60	_	°C/W	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
V _{ds} (max)	Continuous drain to source voltage	_	35	
VIH	High level input voltage	4	6	V
VIL	Low level input voltage	0	0.5	
lds	Continuous drain current			
Tamb=85°C	(TAmbient = 85°C, IN = 5V, rth = 100°C/W, Tj = 125°C)	_	0.75	Α
Rin	Recommended resistor in series with IN pin	1	5	kΩ
Tr-in(max)	Max recommended rise time for IN signal (see fig. 2)	_	1	μS
Fr-Isc (2)	Max. frequency in short circuit condition (Vcc = 14V)	0	1	kHz

- (1) Limited by junction temperature (pulsed current limited also by internal wiring)
- (2) Operations at higher switching frequencies is possible. See Appl. notes.

Static Electrical Characteristics

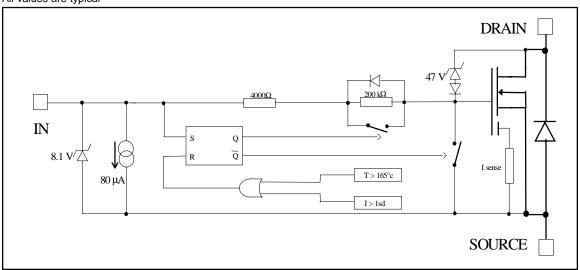
 $(T_i = 25^{\circ}C \text{ unless otherwise specified.})$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance T _i = 25°C	_	370	500	m.O)/ ₁ 5)/ ₁ 40
	Tj = 150°C	_	590	900	mΩ	$V_{in} = 5V$, $I_{ds} = 1A$
I _{dss1}	Drain to source leakage current	0	0.5	25		$V_{CC} = 14V, T_j = 25^{\circ}C$
@Tj=25°C						
I _{dss2}	Drain to source leakage current	0	5	50	μΑ	$V_{CC} = 40V, T_j = 25^{\circ}C$
@Tj=25°C						
V clamp 1	Drain to Source clamp voltage 1	47	52	56		Id = 20mA (see Fig.3 & 4)
V clamp 2	Drain to Source clamp voltage 2	50	53	60		Id=Ishutdown (see Fig.3 & 4)
V _{in} clamp	IN to Source clamp voltage	7	8.1	9.5	V	$I_{in} = 1 \text{ mA}$
Vin th	IN threshold voltage	1	1.6	2		$I_{d} = 50 \text{mA}, V_{dS} = 14 \text{V}$
lin, -on	ON state IN positive current	25	90	200		$V_{in} = 5V$
lin, -off	OFF state IN positive current	50	130	250	μΑ	Vin = 5V
						over-current triggered

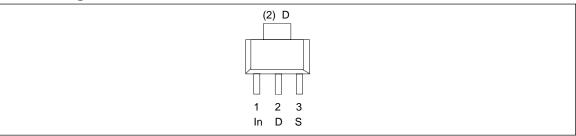
Switching Electrical Characteristics $V_{CC}=14V$, Resistive Load = 20Ω , Rinput = $1k\Omega$, 100μ s pulse, $T_j=25^{\circ}$ C, (unless otherwise specified).

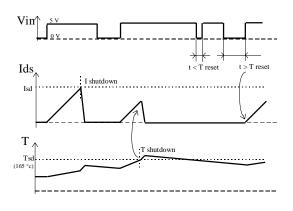
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ton	Turn-on delay time	0.05	0.2	0.5		
T _r	Rise time	0.5	1.3	2.5		See figure 2
T _{rf}	Time to 130% final R _{ds(on)}	_	5	_	μs	
Toff	Turn-off delay time	0.5	1.6	2.5		See figure 2
Tf	Fall time	0.5	1.5	2.5		
Qin	Total gate charge	_	1	_	nC	V _{in} = 5V

Protection Characteristics


Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{sd}	Over temperature threshold		165	_	°C	See fig. 1
I _{sd}	Over current threshold	1.1	1.7	2.2	Α	See fig. 1
Vreset	IN protection reset threshold	1.5	2.3	3	V	
Treset	Time to reset protection	2	10	40	μs	V _{in} = 0V, Tj = 25°C
EOI_OT	Short circuit energy (see application note)	_	400	_	μJ	V _{CC} = 14V

International


TOR Rectifier


Functional Block Diagram

All values are typical

Lead Assignments

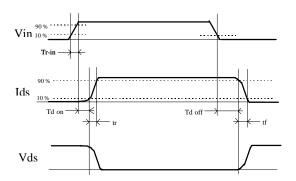
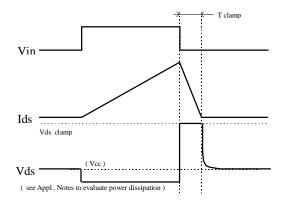
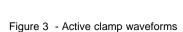




Figure 1 - Timing diagram

Figure 2 - IN rise time & switching time definitions

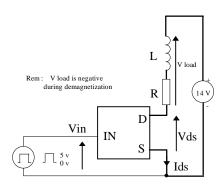


Figure 4 - Active clamp test circuit

International Rectifier

All curves are typical values with standard footprints. Operating in the shaded area is not recommended.

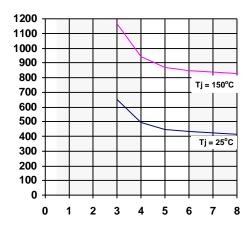


Figure 5 - Rds ON $(m\Omega)$ Vs Input Voltage (V)

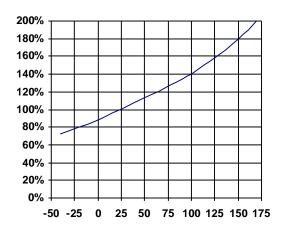


Figure 6 - Normalised Rds ON (%) Vs Tj (°C)

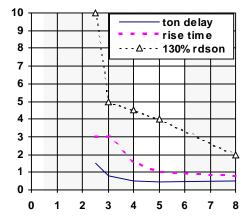


Figure 7 - Turn-ON Delay Time, Rise Time & Time to 130% final Rds(on) (us) Vs Input Voltage (V)

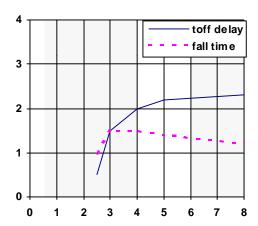
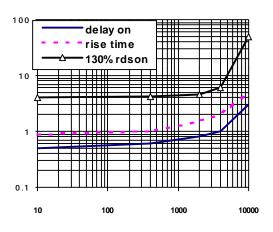
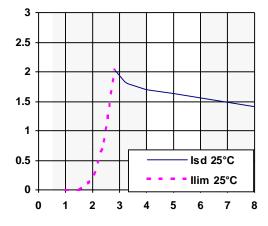



Figure 8 - Turn-OFF Delay Time & Fall Time (us) Vs Input Voltage (V)


0.1 10 100 100 1000 1000

delay off

100

Figure 9 - Turn-ON Delay Time, Rise Time & Time to 130% final Rds(on) (us) Vs IN Resistor (Ω)

Figure 10 - Turn-OFF Delay Time & Fall Time (us) Vs IN Resistor (Ω)

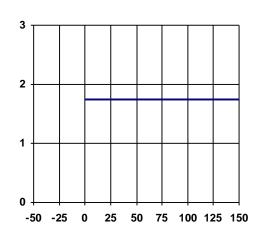


Figure 11 - Current lim. & I shutdown (A) Vs Vin (V)

Figure 12 - I shutdown (A) Vs Temperature (°C)

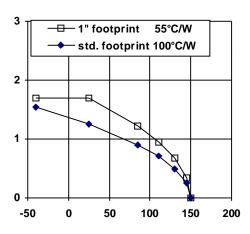


Figure 13 - Max.Cont. Ids (A) Vs Amb. Temperature (°C)

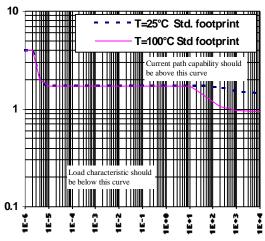


Figure 14 - Ids (A) Vs Protection Resp.Time (s)

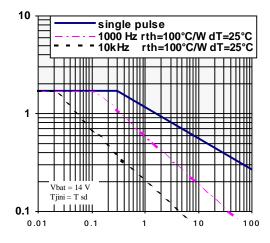


Figure 15 - Iclamp (A) Vs Inductive Load (mH)

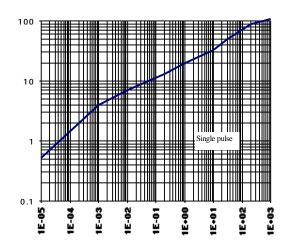


Figure 16 - Transient Thermal Imped. (°C/W) Vs Time (s)

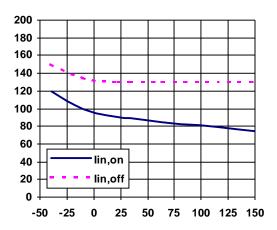


Figure 17 - Input current (μA) Vs Tj (°C)

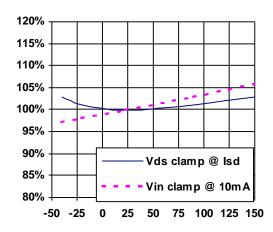


Figure 18 - Vin clamp and V clamp2 (%) Vs Tj (°C)

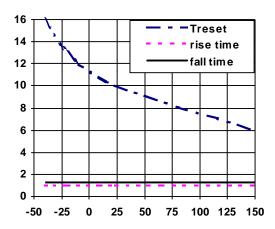
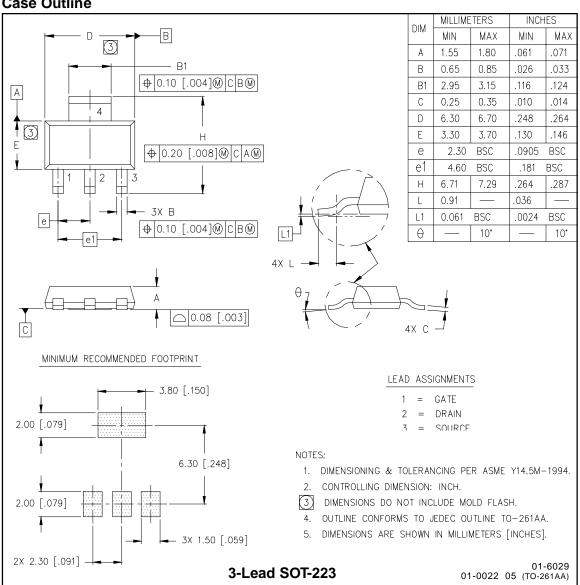
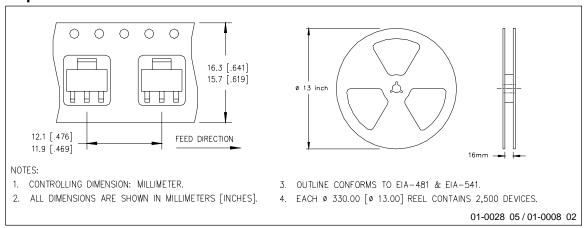



Figure 19 - Turn-on, Turn-off, and $\,$ Treset (µs) $\,$ Vs Tj (°C) $\,$

Case Outline



International

TOR Rectifier

IPS041L

Tape & Reel - SOT223

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 6/11/2001