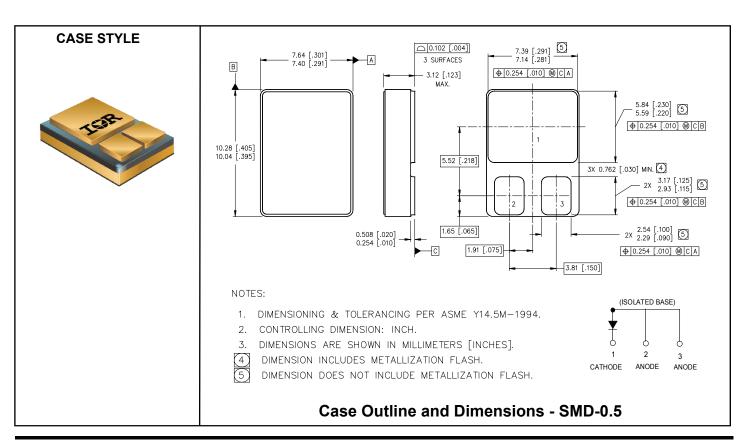


SCHOTTKY RECTIFIER HIGH EFFICIENCY SERIES

30 Amp. 45V


Major Ratings and Characteristics

Characteristics	30SLJQ045	Units
I _{F(AV)}	30	Α
V_{RRM}	45	V
I _{FSM} @ tp = 8.3ms half–sine	270	Α
$V_F @ I_F = 30Apk, T_J = 125^{\circ}C$	0.71	V
T _J , T _{STG} Operating and storage	-55 to 150	°C

Description/Features

The 30SLJQ045 Schottky rectifier has been expressly designed to meet the rigorous requirements of IR HiRel environments. It is packaged in the hermetic surface mount SMD-0.5 ceramic package. The device's forward voltage drop and reverse leakage current are optimized for the lowest power loss and the highest circuit efficiency for typical high frequency switching power supplies and resonant power converters. Full MIL-PRF-19500 quality conformance testing is available on source control drawings to TX, TXV and S quality levels.

- Hermetically Sealed
- Low Forward Voltage Drop
- High Frequency Operation
- Guard Ring for Enhanced Ruggedness and Long term Reliability
- Surface Mount
- Lightweight

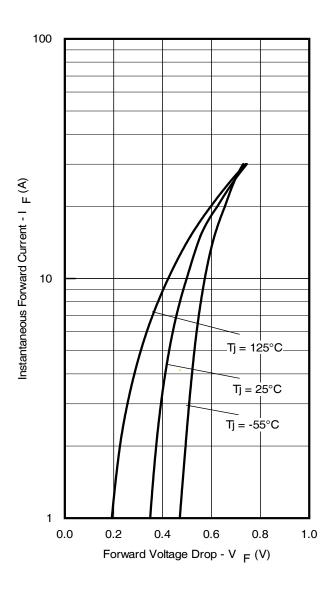
Voltage Ratings

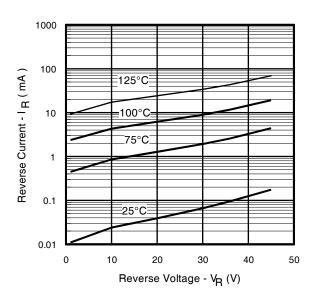
Part Number	30SLJQ045
V _R DC Reverse Voltage (V), maximum	45
V _{RRM} Working Peak Reverse Voltage (V), maximum	45

Absolute Maximum Ratings

	Parameter	Limits	Units	Conditions
I _{F(AV)}	Maximum Average Forward Current See Fig. 5,	30	Α	50% duty cycle @ T _C = 97°C, square waveform
I _{FSM}	Maximum Peak One Cycle Non - Repetitive Surge Current	270	Α	tp = 8.3 ms half-sine

Electrical Specifications


	Parameter	Limits	Units	Conditions	
		0.58	V	I _F = 15A	
		0.63	V	I _F = 20A	T _J = -55°C ②
		0.70	V	I _F = 30A	
		0.53	V	I _F = 15A	
V _{FM} Maximum Forward Voltage Drop See Fig. 1①	0.59	V	I _F = 20A	T _J = 25°C ②	
	See Fig. 10	0.70	V	I _F = 30A	
		0.48	V	I _F = 15A	
		0.57	V	I _F = 20A	T _J = 125°C ②
		0.71	V	I _F = 30A	
I_{RM}	Maximum Reverse Leakage Current	0.4	mA	T _J = 25°C	
	See Fig. 2①	32	mA	T _J = 100°C	V _R = rated V _R ②
		200	mA	T _J = 125°C	
Ст	Maximum Junction Capacitance	1230	pF	V _R = 5V _{DC} (1MHz, 25°C) ②	
Ls	Series Inductance, typical	4.8	nH	Measured from center of cathode pad to center of anode pad	


Thermal-Mechanical Specifications

	Parameter	Limits	Units	Conditions	
T _J	Maximum Junction Temperature Range	-55 to 150	°C		
T _{stg}	Maximum Storage Temperature Range	-55 to 150	°C		
R_{thJC}	Maximum Thermal Resistance, Junction to Case	1.6	°C/W	DC operation See Fig. 4	
Wt	Weight, typical	1.0	g		
	Case Style	SMD-0.5			

- \odot Pulse Width < 300 μ s, Duty Cycle < 2%
- ② Pins 2 and 3 externally tied together

Fig 2. Typical Values of Reverse Current Vs. Reverse Voltage

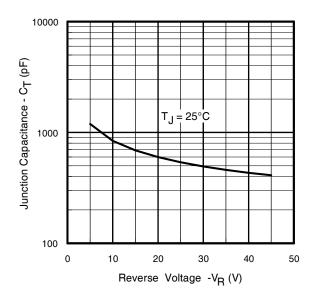


Fig 1. Max. Forward Voltage Drop Characteristics

Fig 3. Typical Junction Capacitance Vs. Reverse Voltage

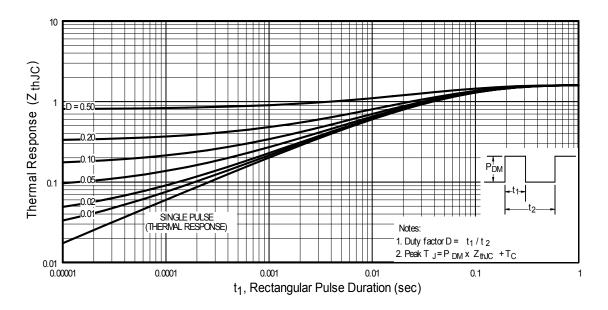
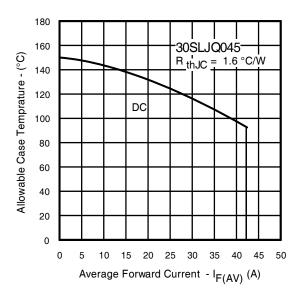



Fig 4. Max. Thermal Impedance ZthJC Characteristics

Fig 5. Max. Allowable Case Temperature Vs. Average Forward Current

www.infineon.com/irhirel

Infineon Technologies Service Center: USA Tel: +1 (866) 951-9519 and International Tel: +49 89 234 65555

Leominster, Massachusetts 01453, USA Tel: +1 (978) 534-5776

San Jose, California 95134, USA Tel: +1 (408) 434-5000

Data and specifications subject to change without notice.

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.