International TOR Rectifier

IRHG6110

RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036AB)

100V, Combination 2N-2P-CHANNEL

RAD-Hard[™] HEXFET[®]

MOSFET TECHNOLOGY

Product Summary

Part Number	Radiation Level	RDS(on)	lD	CHANNEL
IRHG6110	100K Rads (Si)	0.6Ω	1.0A	N
IRHG63110	300K Rads (Si)	0.6Ω	1.0A	N
IRHG6110	100K Rads (Si)	1.1Ω	-0.75A	Р
IRHG63110	300K Rads (Si)	1.1Ω	-0.75A	Р

International Rectifier's RAD-Hard™ HEXFET® MOSFET Technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Package
- Light Weight

Absolute Maximum Ratings (Per Die)

Pre-Irradiation

	Parameter	N-Channel	P-Channel	Units	
ID @ VGS =± 12V, TC = 25°C	Continuous Drain Current	1.0	-0.75		
ID @ VGS =± 12V, TC = 100°C	Continuous Drain Current	0.6	-0.5	Α	
IDM	Pulsed Drain Current ①	4.0	-3.0		
P _D @ T _C = 25°C	Max. Power Dissipation	1.4	1.4	W	
	Linear Derating Factor	0.011	0.011	W/°C	
V _{GS}	Gate-to-Source Voltage	3			
EAS	Single Pulse Avalanche Energy	56 ②	75 ⑦	mJ	
IAR	Avalanche Current ①	1.0	-0.75	Α	
EAR	Repetitive Avalanche Energy ①	0.14	0.14	mJ	
dv/dt	Peak Diode Recovery dv/dt	2.4 ③	2.4 ®	V/ns	
TJ	Operating Junction	-55 to	150		
TSTG	Storage Temperature Range			°C	
	Lead Temperature	300 (0.63 in./1.6 mm			
	Weight	1.3 (Ty	pical)	g	

For footnotes refer to the last page

Electrical Characteristics For Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage		0.125	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State		_	0.7	Ω	Vgs = 12V, ID = 1.0A (4)
	Resistance	_	—	0.6	32	VGS = 12V, ID = 0.6A
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 \text{mA}$
9fs	Forward Transconductance	0.7	-	_	S (7)	$V_{DS} > 15V, I_{DS} = 0.6A \oplus$
IDSS	Zero Gate Voltage Drain Current		_	25	μА	V _{DS} = 80V, V _{GS} = 0V
		_		250	μλ	VDS = 80V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse		_	-100	111/	VGS = -20V
Qg	Total Gate Charge	_	_	11		VGS =12V, ID = 1.0A,
Qgs	Gate-to-Source Charge		_	3.0	nC	$V_{DS} = 50V$
Qgd	Gate-to-Drain ('Miller') Charge	_	_	4.0		
td(on)	Turn-On Delay Time		_	20		$V_{DD} = 50V, I_{D} = 1.0A,$
tr	Rise Time		_	16	ns	V_{GS} =12V, R_{G} = 7.5 Ω
td(off)	Turn-Off Delay Time		_	65	113	
tf	Fall Time	_		45		
LS+LD	Total Inductance	_	10	_	nΗ	Measured from Drain lead (6mm /0.25in.
						from package) to Source lead (6mm /0.25in
						from package) with Source wires internally
						bonded from Source Pin to Drain Pad
Ciss	Input Capacitance	_	300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance		100	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		16			

Source-Drain Diode Ratings and Characteristics (Per Die)

	Parameter		Min	Тур	Max	Units	Test Conditions	
IS	Continuous Source Current (E	Body Diode)		_	1.0	Α		
ISM	Pulse Source Current (Body I	-	_	4.0	Α			
VSD	Diode Forward Voltage			_	1.5	V	$T_j = 25$ °C, $I_S = 1.0$ A, $V_{GS} = 0$ V ④	
t _{rr}	Reverse Recovery Time			_	110	nS	T_j = 25°C, I_F = 1.0A, di/dt ≤ 100A/μs	
QRR	Reverse Recovery Charge			_	390	nC	V _{DD} ≤ 25V ④	
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.						

Thermal Resistance (Per Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	17	°C/W	
RthJA	Junction-to-Ambient	_	_	90	C/VV	Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

Electrical Characteristics For Each P-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

						<u>, , , , , , , , , , , , , , , , , , , </u>
	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	_	_	V	VGS = 0V, ID = -1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	-0.11	_	V/°C	Reference to 25°C, I _D = -1.0mA
RDS(on)	Static Drain-to-Source On-State	_	_	1.2	Ω	$VGS = -12V, ID = -0.75A_{\textcircled{4}}$
	Resistance	_	_	1.1	32	VGS = -12V, ID =- 0.5A
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	$V_{DS} = V_{GS}$, $I_{D} = -1.0$ mA
gfs	Forward Transconductance	0.6	_		S (U)	VDS > -15V, IDS = -0.5A ④
IDSS	Zero Gate Voltage Drain Current		_	-25	μА	V _{DS} = -80V, V _{GS} = 0V
		_	_	-250	μλ	V _{DS} = -80V,
						VGS = 0V, TJ =125°C
IGSS	Gate-to-Source Leakage Forward	_	_	-100	nA	V _G S = - 20V
IGSS	Gate-to-Source Leakage Reverse		_	100	11/1	VGS = 20V
Qg	Total Gate Charge		_	15		VGS = -12V, ID = -0.75A,
Qgs	Gate-to-Source Charge	_	_	4.0	nC	$V_{DS} = -50V$
Q_{gd}	Gate-to-Drain ('Miller') Charge	_	_	4.3		
td(on)	Turn-On Delay Time	_	_	22		$V_{DD} = -50V, I_{D} = -0.75A,$
tr	Rise Time		_	19	ns	V_{GS} = -12V, R_{G} = 24 Ω
td(off)	Turn-Off Delay Time	_	_	66	113	
tf	FallTime	_	_	51		
LS+LD	Total Inductance	_	10	_	nΗ	Measured from Drain lead (6mm /0.25in.
						from package) to Source lead (6mm /0.25in
						from package) with Source wires internally
						bonded from Source Pin to Drain Pad
C _{iss}	Input Capacitance		335	_		$V_{GS} = 0V, V_{DS} = 25V$
Coss	Output Capacitance		100	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	22	_		

Source-Drain Diode Ratings and Characteristics (Per Die)

	Parameter		Min	Тур	Max	Units	Test Conditions		
Is	Continuous Source Current (Body Diode)			_	-0.75	_			
ISM	Pulse Source Current (Body Diode) ①			_	-3.0	Α			
VSD	Diode Forward Voltage			_	-2.5	V	$T_j = 25$ °C, $I_S = -0.75$ A, $V_{GS} = 0$ V ④		
trr	Reverse Recovery Time			_	90	nS	$T_j = 25$ °C, $I_F = -0.75A$, $di/dt \le -100A/\mu s$		
QRR	Reverse Recovery Charge	y Charge			257	nC	V _{DD} ≤ -25V ④		
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.							

Thermal Resistance (Per Die)

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case	_	_	17	°C/W	
R _{th} JA	Junction-to-Ambient	_	_	90	C/VV	Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page

IRHG6110

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics For Each N-Channel Device @ Tj = 25°C, Post Total Dose Irradiation ®®

	Parameter	100KRa	ads(Si)1	300K Rads	s (Si) ²	Units	Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	100	_	100	_	V	V _G S = 0V, I _D = 1.0mA
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}$, $I_{D} = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	_	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	-100	_	-100		V _{GS} = -20 V
I _{DSS}	Zero Gate Voltage Drain Current	_	25	_	25	μA	V _{DS} = 80V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source 4	_	0.56	_	0.66	Ω	$V_{GS} = 12V, I_{D} = 0.6A$
	On-State Resistance (TO-39)						
R _{DS(on)}	Static Drain-to-Source 4	_	0.60	_	0.70	Ω	$V_{GS} = 12V, I_{D} = 0.6A$
. ,	On-State Resistance (MO-036AB)						
V_{SD}	Diode Forward Voltage 4	_	1.5	_	1.5	V	$V_{GS} = 0V, I_{S} = 1.0A$

^{1.} Part number IRHG6110

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area (Per Die)

Ion	LET	Energy	Range	V _{DS} (V)							
	MeV/(mg/cm ²))	(MeV)	(µm)	@V _{GS} =0V	@V _{GS} =-5V	@V _{GS} =-10V	@V _{GS} =-15V	@V _{GS} =-20V			
Cu	28.0	285	43.0	100	100	100	80	60			
Br	36.8	305	39.0	100	90	70	50	_			

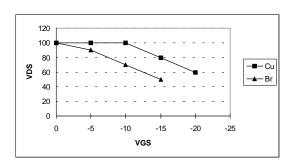


Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

^{2.} Part number IRHG63110

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics For Each P-Channel Device @ Tj = 25°C, Post Total Dose Irradiation ®®

	Parameter	100KF	Rads(Si)1	300K Ra	ads (Si) ²	Units	Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	_	-100	_	V	$V_{GS} = 0V, I_{D} = -1.0 \text{mA}$
VGS(th)	Gate Threshold Voltage	- 2.0	- 4.0	-2.0	-5.0	1 1	$VGS = V_{DS}$, $I_D = -1.0$ mA
I _{GSS}	Gate-to-Source Leakage Forward	_	-100	_	-100	nA	V _{GS} = -20V
IGSS	Gate-to-Source Leakage Reverse	_	100	_	100		V _{GS} = 20 V
I _{DSS}	Zero Gate Voltage Drain Current	_	-25	_	-25	μΑ	V _{DS} =-80V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source ④	_	1.06	_	1.06	Ω	$V_{GS} = -12V, I_{D} = -0.5A$
	On-State Resistance (TO-39)						
R _{DS(on)}	Static Drain-to-Source ④	_	1.1	_	1.1	Ω	Vgs = -12V, I _D =-0.5A
, ,	On-State Resistance (MO-036AB)						
V_{SD}	Diode Forward Voltage ④	_	-2.5	_	-2.5	V	$V_{GS} = 0V, I_{S} = -0.75A$

^{1.} Part number IRHG6110

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area (Per Die)

lon	LET	Energy	Range	V _{DS} (V)							
	MeV/(mg/cm ²))	(MeV)	(µm)	@V _{GS} =0V	$@V_{GS} = 5V$	@ V _{GS} =10V	@V _{GS} =15V	@V _{GS} =20V			
Cu	28.0	285	43.0	-100	-100	-100	-70	-60			
Br	36.8	305	39.0	-100	-100	-70	-50	-40			
I	59.8	343	32.6	-60	_	_	_				

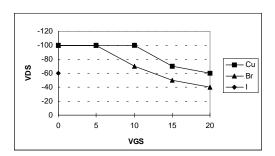


Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

^{2.} Part number IRHG63110

N-Channel Q1,Q3

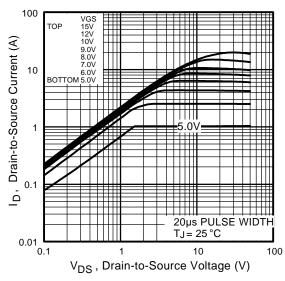
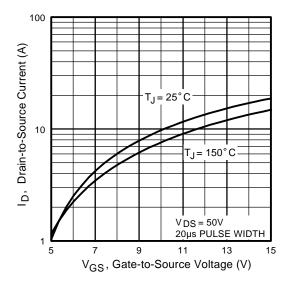



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

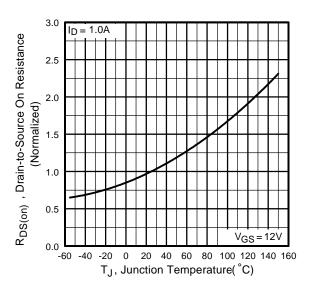
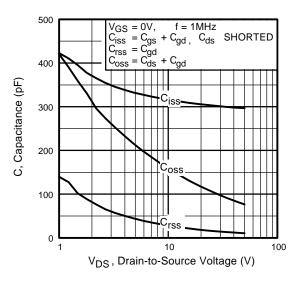
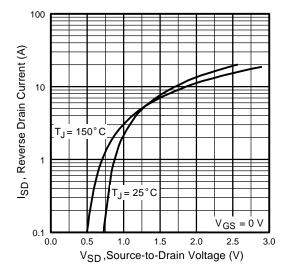



Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature

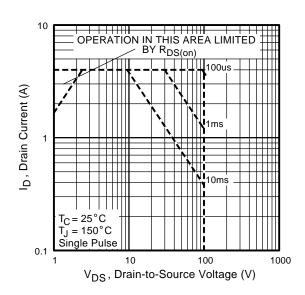

N-Channel Q1,Q3

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

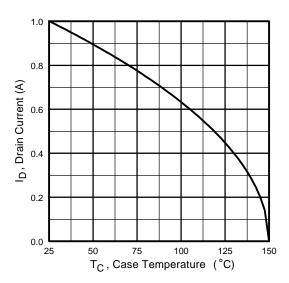


Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

N-Channel Q1,Q3

Fig 9. Maximum Drain Current Vs. Case Temperature

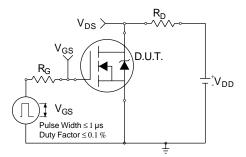


Fig 10a. Switching Time Test Circuit

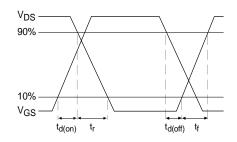


Fig 10b. Switching Time Waveforms

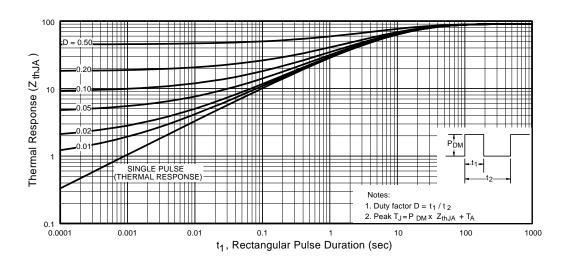


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

N-Channel Q1,Q3

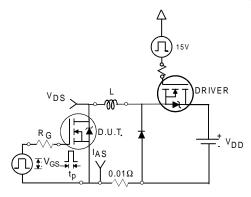


Fig 12a. Unclamped Inductive Test Circuit

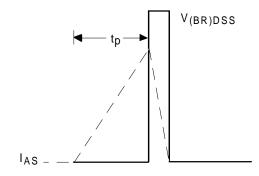


Fig 12b. Unclamped Inductive Waveforms

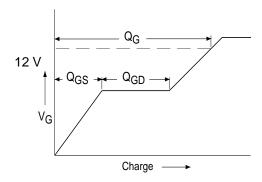
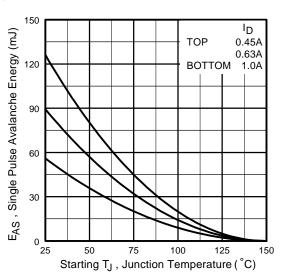



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

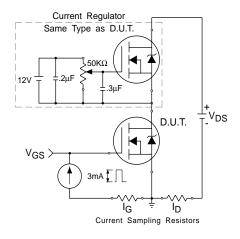
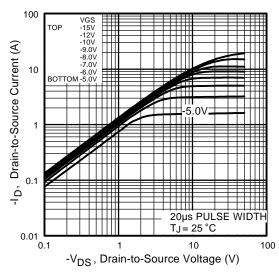



Fig 13b. Gate Charge Test Circuit

P-Channel Q2,Q4

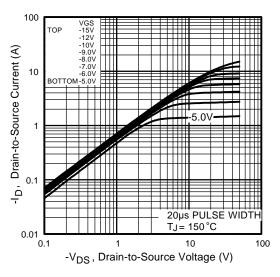


Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

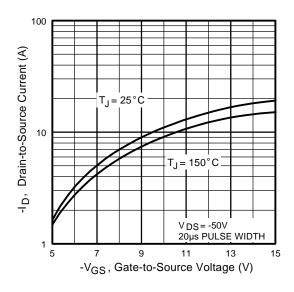
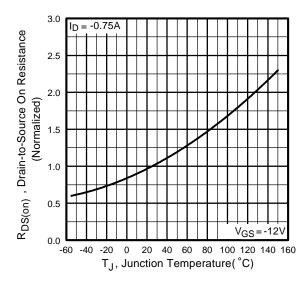
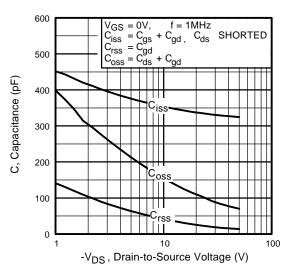
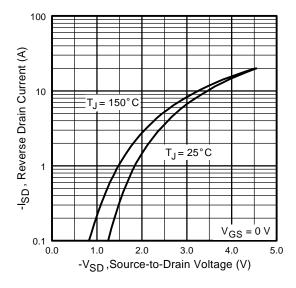




Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature

P-Channel Q2,Q4

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

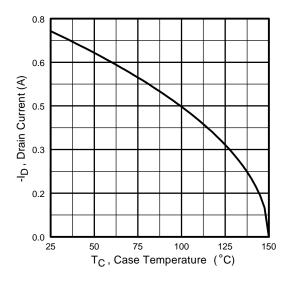
OPERATION IN THIS AREA LIMITED

BY RDS(on)

TC = 25°C

TJ = 150°C

Single Pulse


1 10 100 1000

-VDS, Drain-to-Source Voltage (V)

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

P-Channel Q2,Q4

Fig 9. Maximum Drain Current Vs. Case Temperature

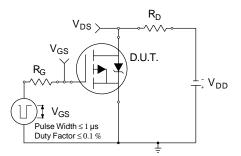


Fig 10a. Switching Time Test Circuit

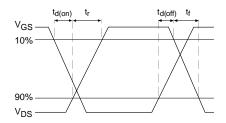


Fig 10b. Switching Time Waveforms

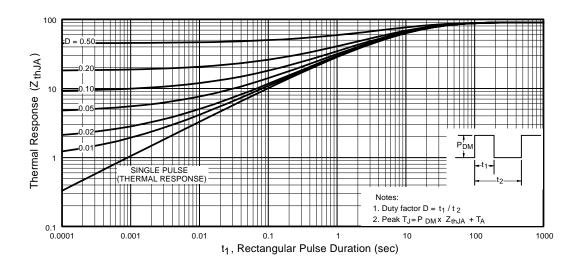


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

P-Channel Q2,Q4

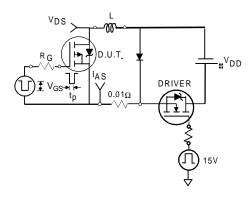


Fig 12a. Unclamped Inductive Test Circuit

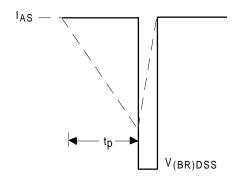


Fig 12b. Unclamped Inductive Waveforms

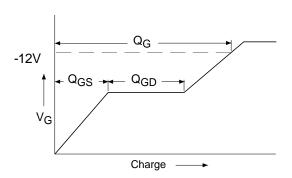
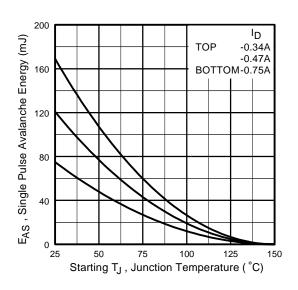
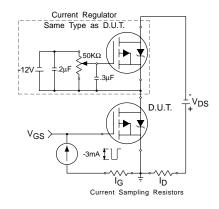
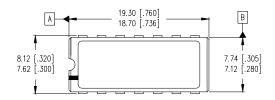
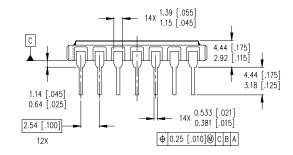



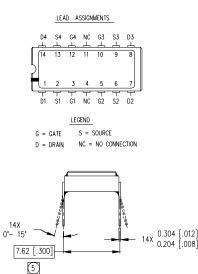
Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit


Footnotes:


- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② $V_{DD} = 25V$, starting $T_J = 25^{\circ}C$, L = 112mH, Peak $I_L = 1.0A$, $V_{GS} = 12V$
- $\label{eq:interpolation} \begin{array}{ll} \text{ (3)} & I_{SD} \leq 1.0A, \ di/dt \leq 187A/\mu s, \\ & V_{DD} \leq 100V, \ T_{J} \leq 150^{\circ}C \end{array}$
- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%

- ⑤ Total Dose Irradiation with VGS Bias.
 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A
- Total Dose Irradiation with Vps Bias.
 volt Vps applied and Vgs = 0 during irradiation per MIL-STD-750, method 1019, condition A
- V_{DD} = 25V, starting T_J = 25°C, L= 267mH, Peak I_L = 0.75A, V_{GS} = -12V
- $\label{eq:sphere:sph$

Case Outline and Dimensions — MO-036AB

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MO-036AB.
- MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDICULAR TO DATUM PLANE C.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 07/01