

IR6210 (NOTE: For new designs, we recommend IR's new products IPS511 and IPS511S)

INTELLIGENT HIGH SIDE MOSFET POWER SWITCH

Features

- PWM current limit for short circuit protection
- Over-temperature protection
- · Active output negative clamp
- Reverse battery protection for logic circuit
- Broken ground protection
- Short to V_{CC} protection
- · Low noise charge pump
- Sleep mode supply current
- 4kV ESD protection on all leads
- Logic ground isolated from power ground

General Description

The IR6210 is a 5 terminal monolithic high side switch with built in short circuit, over- temperature, ESD protections, inductive load turn off capability and diagnostic feedback.

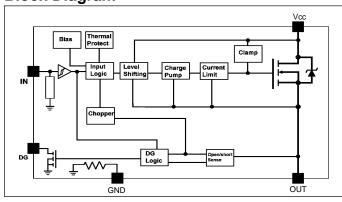
The on-chip protection circuit goes into PWM mode, limiting the average current during short circuit if the drain current exceeds 5A. The protection circuit latches off the high side switch if the junction temperature exceeds 170°C and latches on after the junction temperature falls by 10°C. The Vcc (drain) to out (source) voltage is actively clamped at 55V, improving its performance during turn off with inductive loads.

The on-chip charge pump high side driver stage is floating and referenced to the source of the Power MOSFET. Thus the logic to power ground isolation can be as high as 50V. This allows operation with larger offset as well as controlling the switch during load energy recirculation or regeneration.

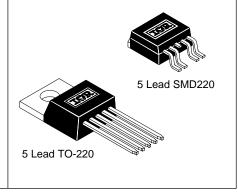
A diagnostic pin is provided for status feedback of short circuit, over temperature and open load detection.

Product summary

	•
V _{cc(op)}	5-50V
R _{DS(on)}	200m $Ω$
I _{lim}	5A
T _{j(sd)}	170°C
Eav	100mJ


Applications

- · Solenoid driver
- Programmable logic controller


Truth Table

Condition	In	Out	Dg
Normal	Н	Н	Н
Normal	L	L	L
Output Open	Н	Н	Н
Output Open	L	Н	Н
Shorted Output	Н	Current-Limiting	L
		PWM Mode	
Shorted Output	L	L	L
Over-Temperature	Н	L	L
Over-Temperature	L	L	L

Block Diagram

Packages

www.irf.com

Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. ($T_C = 25^{\circ}C$ unless otherwise specified.)

Symbol	Parameter		Min.	Max.	Units	Test Conditions
Vcc	Supply voltage	permanent	-0.3	50		
		reverse	-16	_	V	For 10 seconds, (1)
Voffset	Logic to power gro	und offset	Vcc -50	Vcc +0.3		
Vin	Input voltage		-0.3	30		
lin	Input current		_	10	mA	
Vout	Output voltage		Vcc -50	Vcc +0.3	V	
lout	Output current		_	self-limited	Α	
Vdg	Diagnostic output	voltage	-0.3	30	V	
Idg	Diagnostic output	current	_	10	mA	
Eav	Repetitive avalanc	he energy	_	100	mJ	I = 2A (2)
ESD1	Electrostatic discha	arge (Human Body Model)	_	4000	V	$C = 100 \text{ pF,R} = 1500\Omega$
ESD2	Electrostatic discha	arge (Machine Model)	_	1000	V	$C = 200 \text{ pF}, R = 0\Omega$
PD	Power dissipation		_	28	W	Tcase= 25°C
T _{Jop}	Operating junction	temperature range	-40	150		
T _{Stg}	Storage temperatu	re range	-40	150	°C	
TL	Lead temperature	(soldering, 10 seconds)		300		

NOTES: (1) with $15k\Omega$ resistors in input and diagnostic

(2) maximum frequency depends on heatsink (rectangular waveform)

Static Electrical Characteristics

(T_C= 25°C unless otherwise specified.)

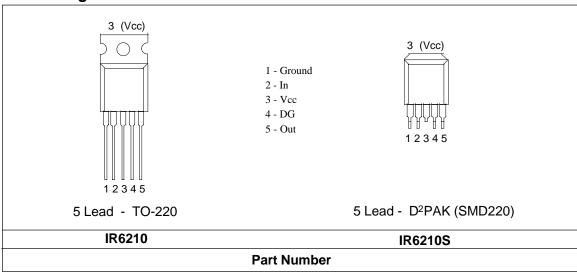
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Vccop	Operating voltage range	5	_	35	V	
Iccoff	Sleep mode supply current	_	40		μΑ	V _{CC} =24V, V _{in} = 0V
Iccon	Supply current (average)	_	3	_	mA	Vin = 5V
Iccac	Supply current (AC RMS)	_	20	_	μΑ	V _{in} = 5V
Vih	High level input threshold voltage	_	2	2.5	V	
Vil	Low level input threshold voltage	1	1.8	_]	
llon	On-state input current	10	_	70		Vin = 3.5V
l _{loff}	Off-state input current	1	_	30	μΑ	$V_{in} = 0.4V$
loh	Output leakage current	_	20	_]	Vout = 6V
lol	Output leakage current	0	_	10]	V _{out} = 0V
Vdgl	Low level diagnostic output voltage	_	0.3	_	V	ldg = 1.6mA
ldgh	Diagnostic output leakage current	0	_	10	μΑ	V _{dg} = 5V
R _{DS} (on)	On-state resistance	_	150	200	mΩ	lout = 1A
		_	200	_	Ī	$V_{CC} = 5V$, $I_{Out} = 1A$

2 ww.irf.com

Switching Electrical Characteristics

 $(V_{CC} = 14V, \text{ resistive load } (R_L) = 12\Omega, T_C = 25^{\circ}C.)$

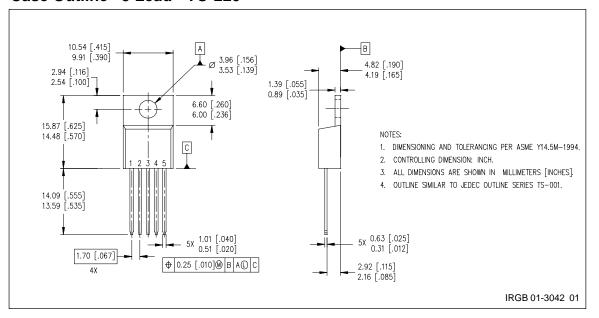
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
tc	Over-current cycle time	_	5	_	ms	
D _C	Over-current duty cycle	_	10	_	%	
ton	Turn-on delay time to 90%	_	50	_		
toff	Turn-off delay time to 10%	_	60		μς	
dv/dton	Slew rate on	_	3	_		
dv/dtoff	Slew rate off	_	5		V/μs	

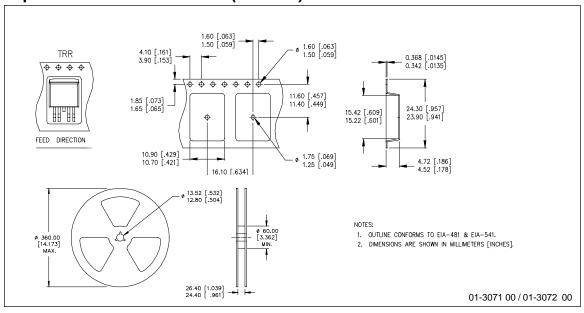

Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
l _{lim}	Internal current limit	_	5	_	Α	
V _{sc}	Short circuit detection voltage		3.5	_		
VsIh	Open load detection voltage	1	3.5	_	V	
V _c l1	Output negative clamp	50	54	_		Iout = 10mA
V _{cl2}	Output negative clamp	_	56	62		I _{out =} 2A

Thermal Characteristics

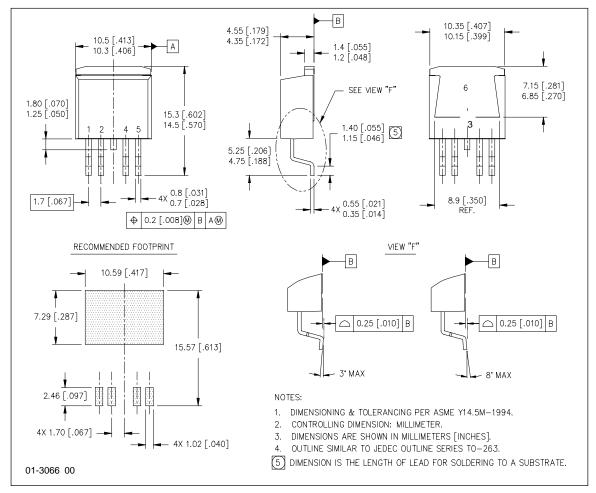
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{jsd}	Thermal shutdown temperature	_	170	_	°C	
Thys	Thermal hysteresis	_	10	_		
R _{thjc}	Thermal resistance, junction to case	_	3.5	_	°C/W	
Rthja	Thermal resistance, junction to ambient	_	50	_	i i	


Lead Assignments


www.irf.com

IR6210 International Internati

Case Outline 5 Lead - TO-220


Tape & Reel 5 Lead - D²PAK (SMD220)

4 ww.irf.com

IR6210

Case Outline 5 Lead - SMD220 (D²PAK)

International TOR Rectifier

5

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++44 (0) 20 8645 8000

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 81 (0) 33 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 2803-7380

Data and specifications subject to change without notice. 3/28/2000

www.irf.com

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/