Sensorless Motor Control IC for Appliances

Features

- MCETM (Motion Control Engine) Hardware based computation engine for high efficiency sinusoidal sensorless control of permanent magnet AC motor
- Integrated Power Factor Correction control
- Supports both interior and surface permanent magnet motors
- Built-in hardware peripheral for single shunt current feedback reconstruction
- No external current or voltage sensing operational amplifier required
- Three/two-phase Space Vector PWM
- Three-channel analog output (PWM)
- Embedded 8-bit high speed microcontroller (8051) for flexible I/O and man-machine control
- JTAG programming port for emulation/debugger
- Serial communication interface (UART)
- I²C/SPI serial interface
- Watchdog timer with independent analog clock
- Three general purpose timers/counters
- Two special timers: periodic timer, capture timer
- Internal 'One-Time Programmable' (OTP) memory and internal RAM for final production usage
- Pin compatible with IRMCK343, RAM version
- 1.8V/3.3V CMOS

Product Summary

Maximum crystal frequency	60 MHz
Maximum internal clock (SYSCLK) frequ	iency 128 MHz
Maximum 8051 clock frequency	33 MHz
Sensorless control computation time	11 µsec typ
MCE [™] computation data range	16 bit signed
8051 OTP Program memory	56K bytes
MCE program and Data RAM	8K bytes
GateKill latency (digital filtered)	2 µsec
PWM carrier frequency counter	16 bits/ SYSCLK
A/D input channels	5
A/D converter resolution	12 bits
A/D converter conversion speed	2 µsec
8051 instruction execution speed	2 SYSCLK
Analog output (PWM) resolution	8 bits
UART baud rate (typ)	57.6K bps
Number of I/O (max)	23
Package (lead-free)	QFP64
Operating temperature	-40°C ~ 85°C

Description

IRMCK343 is a high performance OTP based motion control IC designed primarily for appliance applications. IRMCK343 is designed to achieve low cost and high performance control solutions for advanced inverterized appliance motor control. IRMCK343 contains two computation engines. One is Motion Control Engine (MCE[™]) for sensorless control of permanent magnet motors; the other is an 8-bit high-speed microcontroller (8051). Both computation engines are integrated into one monolithic chip. The MCE[™] contains a collection of control elements such as Proportional plus Integral, Vector rotator, Angle estimator, Multiply/Divide, Low loss SVPWM, Single Shunt IFB. The user can program a motion control algorithm by connecting these control elements using a graphic compiler. Key components of the sensorless control algorithms, such as the Angle Estimator, are provided as complete pre-defined control blocks implemented in hardware. A unique analog/digital circuit and algorithm to fully support single shunt current reconstruction is also provided. The 8051 microcontroller performs 2-cycle instruction execution (60MIPS at 120MHz). The MCE and 8051 microcontroller are connected via dual port RAM to process signal monitoring and command input. An advanced graphic compiler for the MCE[™] is seamlessly integrated into the MATLAB/Simulink environment, while third party JTAG based emulator tools are supported for 8051 developments. IRMCK343 comes with a small QFP64 pin lead-free package.

TABLE OF CONTENTS

1		erview	5
2	IRM	ACK343 Block Diagram and Main Functions	6
3	Pine	out	8
4	Inpi	ut/Output of IRMCK343	9
	4.1	8051 Peripheral Interface Group	9
	4.2	Motion Peripheral Interface Group	10
	4.3	Analog Interface Group	11
	4.4	Power Interface Group	11
	4.5	Test Interface Group	
5		olication Connections	
6	DC	Characteristics	
	6.1	Absolute Maximum Ratings	
	6.2	System Clock Frequency and Power Consumption	13
	6.3	Digital I/O DC Characteristics	
	6.4	PLL and Oscillator DC Characteristics	
	6.5	Analog I/O DC Characteristics	15
	6.6	Under Voltage Lockout DC Characteristics	
_	6.7	AREF Characteristics	
7		Characteristics	
	7.1	PLL AC Characteristics	
	7.2	Analog to Digital Converter AC Characteristics	18
	7.3	Op Amp AC Characteristics	
	7.4	SYNC to SVPWM and A/D Conversion AC Timing	
	7.5	GATEKILL to SVPWM AC Timing	
	7.6	Interrupt AC Timing	
	7.7	I ² C AC Timing	
	7.8	SPI AC Timing	
		1 SPI Write AC timing	
	7.8.		
		UART AC Timing	
	7.10 7.11	CAPTURE Input AC Timing	25 26
		JTAG AC Timing	
0	7.12	OTP Programming Timing	
8			
9		List	
1		ackage Dimensions art Marking Information	
1			35 35

TABLE OF FIGURES

Figure 1	Typical Application Block Diagram Using IRMCK343	5
Figure 2.	IRMCK343 Internal Block Diagram	
Figure 3.	IRMCK343 Pin Configuration	
Figure 4.	Input/Output of IRMCK343	
Figure 5.	Application Connection of IRMCK343	12
Figure 6.	Clock Frequency vs. Power Consumption	13
Figure 7	Crystal oscillator circuit	17
Figure 8	Voltage droop of sample and hold	18
Figure 9	SYNC to SVPWM and A/D Conversion AC Timing	19
Figure 10	GATEKILL to SVPWM AC Timing	20
Figure 11	Interrupt AC Timing	20
Figure 12	I ² C AC Timing	21
Figure 13	SPI write AC Timing	22
Figure 14	SPI read AC Timing	23
Figure 15	UART AC Timing	24
Figure 16	CAPTURE Input AC Timing	25
Figure 17	JTAG AC Timing	26
Figure 18	OTP Programming Timing	27
Figure 19	All digital I/O and motor PWM output	28
Figure 20	RESET, GATEKILL I/O	28
Figure 21	Analog input	29
Figure 22	Analog operational amplifier output and AREF I/O structure	29
Figure 23	VPP programming pin	29
Figure 24	VSS, AVSS and PLLVSS pin structure	30
Figure 25	VDD1, VDD2, AVDD and PLLVDD pin structure	30
Figure 26	XTAL0/XTAL1 pins structure	30

TABLE OF TABLES

Table 1.	Absolute Maximum Ratings	13
Table 2.	System Clock Frequency	13
Table 3.	Digital I/O DC Characteristics	14
Table 4.	PLL DC Characteristics	14
Table 5.	Analog I/O DC Characteristics	15
Table 6.	UVcc DC Characteristics	
Table 7.	AREF DC Characteristics	16
Table 8.	PLL AC Characteristics	17
Table 9.	A/D Converter AC Characteristics	18
Table 10.	Current Sensing OP amp Amp AC Characteristics	18
Table 11.	SYNC AC Characteristics	19
Table 12.	GATEKILL to SVPWM AC Timing	20
Table 13.	Interrupt AC Timing	20
Table 14.		
Table 15.	SPI Write AC Timing	22
Table 16.	SPI Read AC Timing	23
Table 17.	UART AC Timing	24
Table 18.	CAPTURE AC Timing	25
Table 19.	JTAG AC Timing	26
Table 20.	OTP Programming Timing	
Table 21	Pin List	33

1 Overview

IRMCK343 is a new International Rectifier integrated circuit device primarily designed as a one-chip solution for complete inverter controlled appliance motor control applications. Unlike a traditional microcontroller or DSP, the IRMCK343 provides a built-in closed loop sensorless control algorithm using the unique Motion Control Engine (MCETM) for permanent magnet motor. The MCETM consists of a collection of control elements, motion peripherals, a dedicated motion control sequencer and dual port RAM to map internal signal nodes. IRMCK343 also employs a unique single shunt current reconstruction circuit to eliminate additional analog/digital circuitry and enables a direct shunt resistor interface to the IC. Motion control programming is achieved using a dedicated graphical compiler integrated into the MATLAB/SimulinkTM development environment. Sequencing, user interface, host communication, and upper layer control tasks can be implemented in the 8051 high-speed 8-bit microcontroller. The 8051 microcontroller is equipped with a JTAG port to facilitate emulation and debugging tools.

Figure 1 shows a typical application schematic using the IRMCK343.

IRMCK343 is intended for volume production purpose and contains 64K bytes of OTP (One Time Programming) ROM, which can be programmed through a JTAG port. For a development purpose use, IRMCF343 contains a 48k byte of RAM in place of program OTP to facilitate an application development work. Both IRMCF343 and IRMCK343 come in the same 64-pin QFP package with identical pin configuration to facilitate PC board layout and transition to mass production

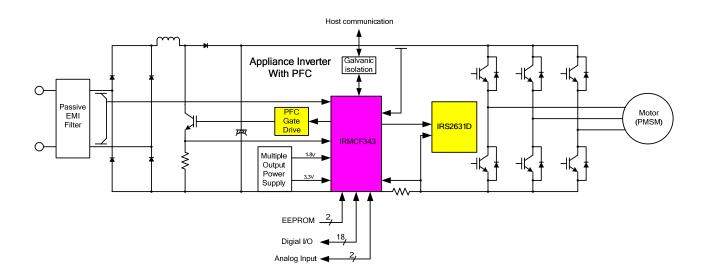


Figure 1 Typical Application Block Diagram Using IRMCK343

2 IRMCK343 Block Diagram and Main Functions

IRMCK343 block diagram is shown in Figure 2.

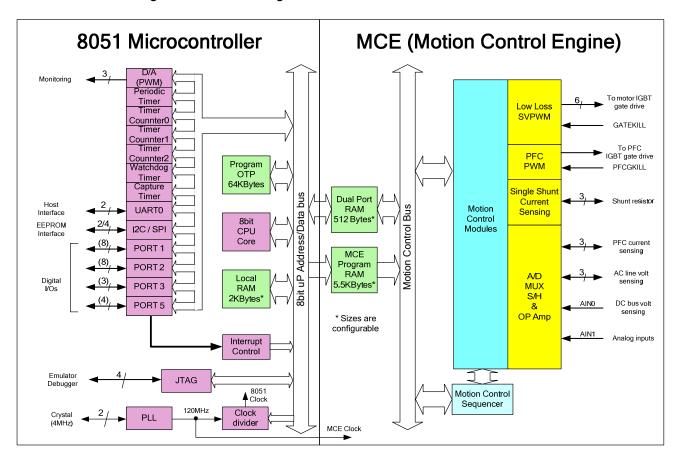


Figure 2. IRMCK343 Internal Block Diagram

IRMCK343 contains the following functions for sensorless AC motor control applications:

- Motion Control Engine (MCETM)
 - Proportional plus Integral block
 - o Low pass filter
 - Differentiator and lag (high pass filter)
 - o Ramp
 - o Limit
 - Angle estimate (sensorless control)
 - o Inverse Clark transformation
 - Vector rotator
 - Bit latch
 - Peak detect

- Transition
- Multiply-divide (signed and unsigned)
- Divide (signed and unsigned)
- o Adder
- o Subtractor
- o Comparator
- o Counter
- Accumulator
- Switch
- o Shift
- ATAN (arc tangent)
- Function block (any curve fitting, nonlinear function)
- o 16-bit wide Logic operations (AND, OR, XOR, NOT, NEGATE)
- o MCETM program and data memory (6K byte). Note 1
- o MCE[™] control sequencer

8051 microcontroller

- Three 16-bit timer/counters
- o 16-bit periodic timer
- o 16-bit analog watchdog timer
- 16-bit capture timer
- o Up to 23 discrete I/Os
- o Five-channel 12-bit A/D
 - Three buffered channels (0 1.2V input)
 - Two unbuffered channels (0 1.2V input)
- JTAG port (4 pins)
- Up to three channels of analog output (8-bit PWM)
- o UART
- o I²C/SPI port
- 64K byte program OTP
- o 2K byte data RAM. Note 1

Note 1: Total size of RAM is 8K byte including MCE program, MCE data, and 8051 data. Different sizes can be allocated depending on applications.

3 Pinout

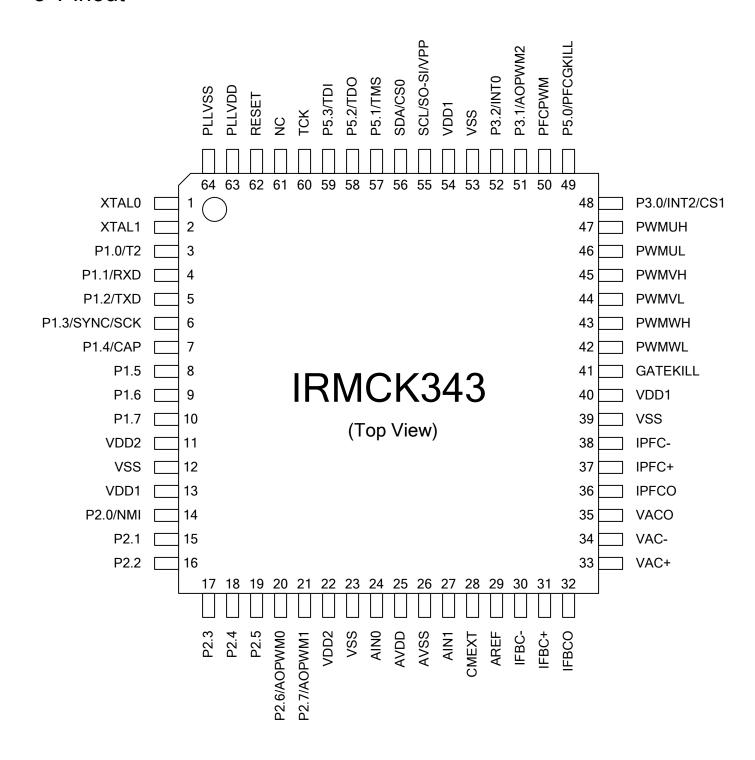


Figure 3. IRMCK343 Pin Configuration

4 Input/Output of IRMCK343

All I/O signals of IRMCK343 are shown in Figure 4. All I/O pins are 3.3V logic interface except A/D interface pins.

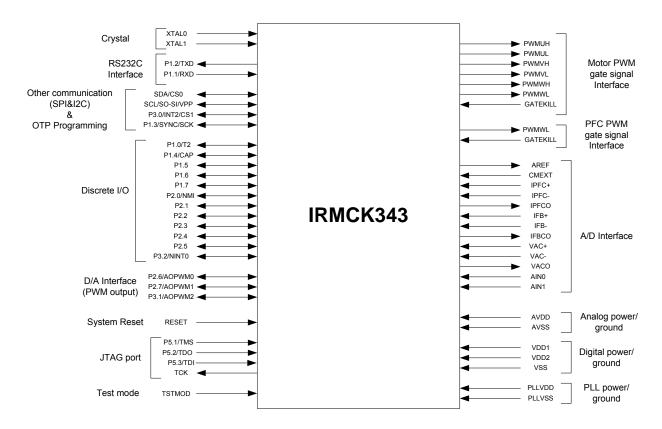


Figure 4. Input/Output of IRMCK343

4.1 8051 Peripheral Interface Group

UART Interface

P1.2/TXD Output, Transmit data from IRMCK343 P1.1/RXD Input, Receive data to IRMCK343

Discrete I/O Interface

P1.0/T2	Input/output port 1.0, can be configured as Timer/Counter 2 input
P1.3/SYNC/SCK	Input/output port 1.3, can be configured as SYNC output or SPI clock
P1.4/CAP	Input/output port 1.4, can be configured as Capture Timer input
P1.5	Input/output port 1.5
P1.6	Input/output port 1.6
P1.7	Input/output port 1.7
P2.0/NMI	Input/output port 2.0, can be configured as Non-maskable interrupt input
P2.1	Input/output port 2.1

International IRMCK343

P2.2	Input/output port 2.2
P2.3	Input/output port 2.3
P2.4	Input/output port 2.4
P2.5	Input/output port 2.5

P3.0/INT2/CS1 Input/output port 3.0, can be configured as INT2 input or SPI chip select

1

P3.2/INT0 Input/output port 3.2, can be configured as INT0 input

Analog Output Interface

P2.6/AOPWM0 Input/output, can be configured as 8-bit PWM output 0 with

programmable carrier frequency

P2.7/AOPWM1 Input/output, can be configured as 8-bit PWM output 1 with

programmable carrier frequency

P3.1/AOPWM2 Input/output, can be configured as 8-bit PWM output 2 with

programmable carrier frequency

Crystal Interface

XTAL0 Input, connected to crystal XTAL1 Output, connected to crystal

Reset Interface

RESET Input/output, system reset, needs to be pulled up to VDD1 but doesn't

require external RC time constant

I²C/SPI Interface/OTP Programming

SCL/SO-SI/VPP Output or Power, I²C clock output or SPI data or OTP Programming

SDA/CS0 Input/output, I²C data line or SPI chip select 0

P3.0/INT2/CS1 Input/output, INT2 or SPI chip select 1

P1.3/SYNC/SCK Input/output, SYNC output or SPI clock, needs to be pulled up to VDD1

in order to boot from I²C EEPROM

4.2 Motion Peripheral Interface Group

PWM

PWMUH
Output, PWM phase U high side gate signal
Output, PWM phase U low side gate signal
Output, PWM phase V high side gate signal
Output, PWM phase V low side gate signal
Output, PWM phase V low side gate signal
Output, PWM phase W high side gate signal
Output, PWM phase W low side gate signal

PFCPWM Output, PFC PWM gate signal

Fault

GATEKILL Input, upon assertion, this negates all six PWM signals, programmable

logic sense

P5.0/PFCGKILL Input, upon assertion, this negates PFCPWM signal, programmable logic

sense, can be configured as discrete I/O in which case CGATEKILL

negates PFCPWM

4.3 Analog Interface Group

AVDD Analog power (1.8V) AVSS Analog power return

CMEXT Unbuffered 0.6V, input to the AREF buffer, capacitor needs to be

connected.

AREF 0.6V buffered output

IFB+ Input, Operational amplifier positive input for shunt resistor current

sensing

IFB- Input, Operational amplifier negative input for shunt resistor current

sensing

IFBO Output, Operational amplifier output for shunt resistor current sensing IPFC+ Input, Operational amplifier positive input for PFC current sensing IPFC- Input, Operational amplifier negative input for PFC current sensing Output, Operational amplifier output for PFC current sensing

VAC+ Input, Operational amplifier positive input for PFC AC voltage sensing Input, Operational amplifier negative input for PFC AC voltage sensing VACO Output, Operational amplifier output for PFC AC voltage sensing

AINO Input, Analog input channel 0 (0 - 1.2V), typically configured for DC bus

voltage input

AIN1 Input, analog input channel 1 (0 - 1.2V), needs to be pulled down to

AVSS if unused

4.4 Power Interface Group

VDD1 Digital power for I/O (3.3V)

VDD2 Digital power for core logic (1.8V)

VSS Digital common
PLLVDD PLL power (1.8V)
PLLVSS PLL ground return

4.5 Test Interface Group

TSTMOD Must be tied to VSS, used only for factory testing.

P5.3/TDI Input, JTAG test data input P5.1/TMS Input, JTAG test mode select

TCK Input, JTAG test clock

P5.2/TDO Output, JTAG test data output

5 Application Connections

Typical application connection is shown in Figure 5. All components necessary to implement a complete sensorless drive control algorithm are shown connected to IRMCK343.

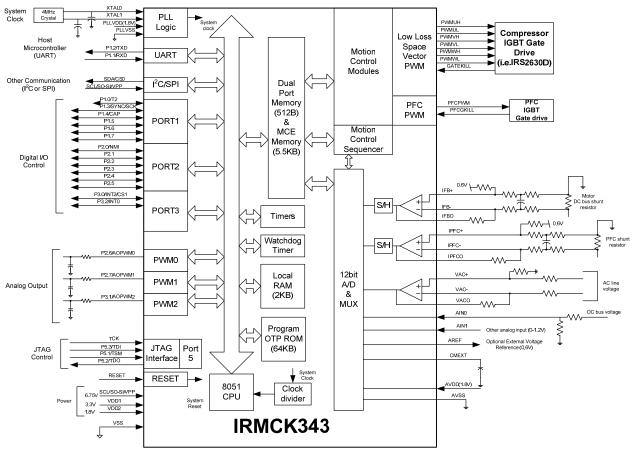
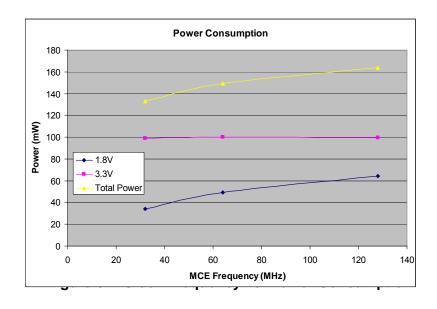


Figure 5. Application Connection of IRMCK343

6 DC Characteristics

6.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Тур	Max	Condition
V_{DD1}	Supply Voltage	-0.3 V	-	3.6 V	Respect to VSS
V_{DD2}	Supply Voltage	-0.3 V	-	1.98 V	Respect to VSS
V_{IA}	Analog Input Voltage	-0.3 V	-	1.98 V	Respect to AVSS
V_{ID}	Digital Input Voltage	-0.3 V	-	3.65 V	Respect to VSS
T _A	Ambient Temperature	-40 °C	-	85 °C	
Ts	Storage Temperature	-65 °C	-	150 °C	


Table 1. Absolute Maximum Ratings

Caution: Stresses beyond those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and function of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied.

6.2 System Clock Frequency and Power Consumption

Symbol	Parameter	Min	Тур	Max	Unit
SYSCLK	System Clock	32	-	128	MHz
8051CLK	8051 Clock	-	-	32	MHz

Table 2. System Clock Frequency

6.3 Digital I/O DC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
V_{DD1}	Supply Voltage	3.0 V	3.3 V	3.6 V	Recommended
V_{DD2}	Supply Voltage	1.62 V	1.8 V	1.98 V	Recommended
V_{IL}	Input Low Voltage	-0.3 V	ı	0.8 V	Recommended
V_{IH}	Input High Voltage	2.0 V		3.6 V	Recommended
C_{IN}	Input capacitance	ı	3.6 pF	-	(1)
IL	Input leakage current		±10 nA	±1 μA	$V_0 = 3.3 \text{ V or } 0 \text{ V}$
I _{OL1} ⁽²⁾	Low level output current	8.9 mA	13.2 mA	15.2 mA	$V_{OL} = 0.4 \text{ V}$
I _{OH1} ⁽²⁾	High level output current	12.4 mA	24.8 mA	38 mA	V _{OH} = 2.4 V
I _{OL2} ⁽³⁾	Low level output current	17.9 mA	26.3 mA	33.4 mA	$V_{OL} = 0.4 \text{ V}$
I _{OH2} ⁽³⁾	High level output current	24.6 mA	49.5 mA	81 mA	V _{OH} = 2.4 V

Table 3. Digital I/O DC Characteristics

Note:

- (1) Data guaranteed by design.
- (2) Applied to SCL/SO-SI, SDA/CS0 pins.
- (3) Applied to P1.0/T2, P1.1/RXD, P1.2/TXD, P1.3/SYNC/SCK, P1.4/CAP, P1.5, P1.6, P1.7, P2.0/NMI, P2.1, P2.2, P2.3, P2.4, P2.5, P2.6/AOPWM0, P2.7/AOPWM1, P3.0/INT2/CS1, P3.1/AOPWM2, P3.2/INT0, P5.0/PFCGKILL, P5.1/TMS, P5.2/TDO, P5.3/TDI, GATEKILL, PWMUL, PWMUH, PWMVL, PWMVH, PWMWH, and PFCPWM pins.

6.4 PLL and Oscillator DC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
V_{PLLVDD}	Supply Voltage	1.62 V	1.8 V	1.92 V	Recommended
V _{IL OSC}	Oscillator Input Low Voltage	V_{PLLVSS}	-	0.2* V _{PLLVDD}	$V_{PLLVDD} = 1.8 V$
V _{IH OSC}	Oscillator Input High Voltage	0.8* V _{PLLVDD}		V_{PLLVDD}	V _{PLLVDD} = 1.8 V

Table 4. PLL DC Characteristics

Note:

(1) Data guaranteed by design.

Analog I/O DC Characteristics 6.5

- OP amps for current sensing (IFB+, IFB-, IFBO, IPFC+, IPFC-, IPFCO) $C_{AREF} = 1$ nF, $C_{MEXT} = 10$ 0nF. Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
V_{AVDD}	Supply Voltage	1.71 V	1.8 V	1.89 V	Recommended
V_{OFFSET}	Input Offset Voltage	-	-	26 mV	V_{AVDD} = 1.8 V
V_{l}	Input Voltage Range	0 V		1.2 V	Recommended
V_{OUTSW}	OP amp output operating range	50 mV	-	1.2 V	V_{AVDD} = 1.8 V
C _{IN}	Input capacitance	-	3.6 pF	-	(1)
R _{FDBK}	OP amp feedback resistor	5 kΩ	-	20 kΩ	Requested between op amp output and negative input
OP GAINCL	Operating Close loop Gain	80 db	-	-	(1)
CMRR	Common Mode Rejection Ratio	-	80 db	-	(1)
I _{SRC}	Op amp output source current	-	1 mA	-	V _{OUT} = 0.6 V
I _{SNK}	Op amp output sink current	-	100 μΑ	-	V _{OUT} = 0.6 V

Table 5. Analog I/O DC Characteristics

Note:

(1) Data guaranteed by design.

6.6 Under Voltage Lockout DC Characteristics

- Based on AVDD (1.8V)

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
UV _{CC+}	UVcc positive going Threshold ¹⁾	1.53 V	1.66 V	1.71 V	$V_{DD1} = 3.3 \text{ V}$
UV _{CC-}	UVcc negative going Threshold	1.52 V	1.62 V	1.71 V	$V_{DD1} = 3.3 \text{ V}$
UV _{CC} H	UVcc Hysteresys	-	40 mV	-	

Table 6. UVcc DC Characteristics

Note:

(1) Data guaranteed by design.

6.7 AREF Characteristics

 C_{AREF} = 1nF, C_{MEXT} = 100nF. Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
V_{AREF}	AREF Output Voltage	495 mV	600 mV	700 mV	V_{AVDD} = 1.8 V
ΔV_o	Load regulation (V _{DC} -0.6)	-	1 mV	-	(1)
PSRR	Power Supply Rejection	-	75 db	-	(1)
	Ratio				

Table 7. AREF DC Characteristics

Note:

(1) Data guaranteed by design.

7 AC Characteristics

7.1 PLL AC Characteristics

Symbol	Parameter	Min	Тур	Max	Condition
F _{CLKIN}	Crystal input	3.2 MHz	4 MHz	60 MHz	(1)
	frequency				(see figure below)
F_PLL	Internal clock	32 MHz	50 MHz	128 MHz	(1)
	frequency				
F_{LWPW}	Sleep mode output	F _{CLKIN} ÷ 256	-	-	(1)
	frequency				
J_S	Short time jitter	-	200 psec	-	(1)
D	Duty cycle	-	50 %	-	(1)
T _{LOCK}	PLL lock time	-	-	500 µsec	(1)

Table 8. PLL AC Characteristics

Note:

(1) Data guaranteed by design.



Figure 7 Crystal oscillator circuit

Downloaded from Arrow.com.

7.2 Analog to Digital Converter AC Characteristics

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
T_{CONV}	Conversion time	-	-	2.05 µsec	(1)
T _{HOLD}	Sample/Hold maximum hold time	-	-	10 µsec	Voltage droop ≤ 15 LSB (see figure below)

Table 9. A/D Converter AC Characteristics

Note:

(1) Data guaranteed by design.

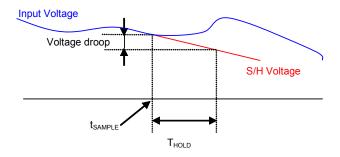


Figure 8 Voltage droop of sample and hold

7.3 Op Amp AC Characteristics

- OP amps for current sensing (IFB+, IFB-, IFBO, IPFC+, IPFC-, IPFCO)

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Condition
OP _{SR}	OP amp slew rate	-	10 V/µsec	-	V_{AVDD} = 1.8 V, CL = 33 pF ⁽¹⁾
OP_{IMP}	OP input impedance	-	10 ⁸ Ω	-	(1)
T _{SET}	Settling time	-	400 ns	-	V_{AVDD} = 1.8 V, CL = 33 pF ⁽¹⁾

Table 10. Current Sensing OP amp Amp AC Characteristics

Note:

(1) Data guaranteed by design.

7.4 SYNC to SVPWM and A/D Conversion AC Timing

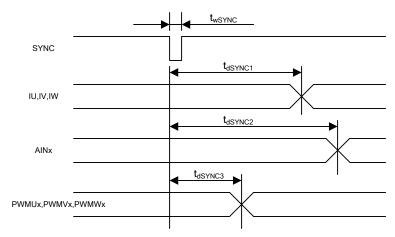


Figure 9 SYNC to SVPWM and A/D Conversion AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t _{wSYNC}	SYNC pulse width	-	32	-	SYSCLK
t _{dSYNC1}	SYNC to current feedback conversion time	-	-	100	SYSCLK
t _{dSYNC2}	SYNC to AIN0-6 analog input conversion time	-	-	200	SYSCLK (1)
t _{dSYNC3}	SYNC to PWM output delay time	-	-	2	SYSCLK

Table 11. SYNC AC Characteristics

Note:

(1) AIN1 through AIN6 channels are converted once every 6 SYNC events

7.5 GATEKILL to SVPWM AC Timing

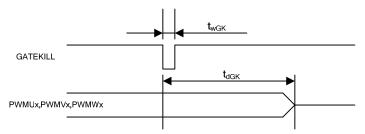


Figure 10 GATEKILL to SVPWM AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t_{wGK}	GATEKILL pulse width	32	-	-	SYSCLK
t_{dGK}	GATEKILL to PWM	-	-	100	SYSCLK
	output delay				

Table 12. GATEKILL to SVPWM AC Timing

7.6 Interrupt AC Timing

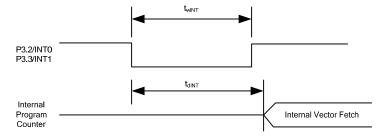


Figure 11 Interrupt AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
t _{wINT}	INT0, INT1 Interrupt	4	-	-	SYSCLK
	Assertion Time				
t _{dINT}	INT0, INT1 latency	-	-	4	SYSCLK

Table 13. Interrupt AC Timing

7.7 I²C AC Timing

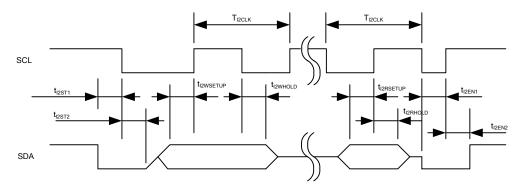


Figure 12 I²C AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{I2CLK}	I ² C clock period	10	-	8192	SYSCLK
t _{I2ST1}	I ² C SDA start time	0.25	-	-	T _{I2CLK}
t _{I2ST2}	I ² C SCL start time	0.25	-	•	T _{I2CLK}
t _{I2WSETUP}	I ² C write setup time	0.25	-	-	T _{I2CLK}
t _{I2WHOLD}	I ² C write hold time	0.25	-	-	T _{I2CLK}
t _{I2RSETUP}	I ² C read setup time	I ² C filter time ⁽¹⁾	-	-	SYSCLK
t _{I2RHOLD}	I ² C read hold time	1	-	-	SYSCLK

Table 14. I²C AC Timing

Note:

(1) I²C read setup time is determined by the programmable filter time applied to I²C communication.

7.8 SPI AC Timing

7.8.1 SPI Write AC timing

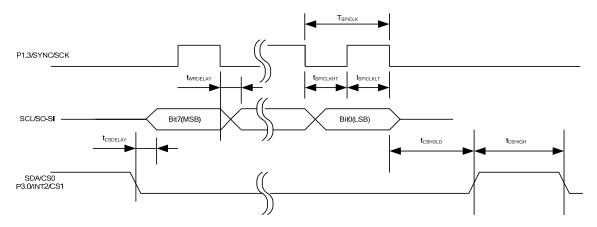


Figure 13 SPI write AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{SPICLK}	SPI clock period	4	-	-	SYSCLK
t _{SPICLKHT}	SPI clock high time	-	1/2	-	T _{SPICLK}
t _{SPICLKLT}	SPI clock low time	-	1/2	-	T _{SPICLK}
t _{CSDELAY}	CS to data delay time	-	-	10	nsec
t _{WRDELAY}	CLK falling edge to data delay time	-	-	10	nsec
t _{сsніgн}	CS high time between two consecutive byte transfer	1	-	-	T _{SPICLK}
t _{CSHOLD}	CS hold time	-	1	-	T _{SPICLK}

Table 15. SPI Write AC Timing

7.8.2 SPI Read AC Timing

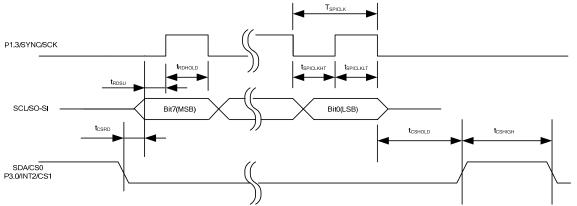


Figure 14 SPI read AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{SPICLK}	SPI clock period	4	-	-	SYSCLK
t _{SPICLKHT}	SPI clock high time	-	1/2	-	T _{SPICLK}
t _{SPICLKLT}	SPI clock low time	-	1/2	-	T _{SPICLK}
t _{CSRD}	CS to data delay time	-	-	10	nsec
t _{RDSU}	SPI read data setup time	10	-	-	nsec
t _{RDHOLD}	SPI read data hold time	10	-	-	nsec
t _{CSHIGH}	CS high time between two consecutive byte transfer	1	-	-	T _{SPICLK}
t _{CSHOLD}	CS hold time	-	1	-	T _{SPICLK}

Table 16. SPI Read AC Timing

7.9 UART AC Timing

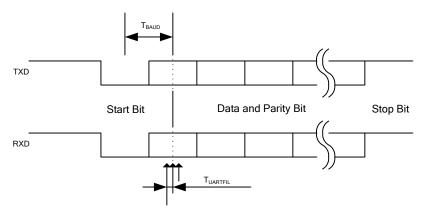


Figure 15 UART AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T_{BAUD}	Baud Rate Period	-	57600	-	bit/sec
T _{UARTFIL}	UART sampling filter period ⁽¹⁾	-	1/16	-	T_{BAUD}

Table 17. UART AC Timing

Note:

(1) Each bit including start and stop bit is sampled three times at center of a bit at an interval of 1/16 T_{BAUD}. If three sampled values do not agree, then UART noise error is generated.

7.10 CAPTURE Input AC Timing

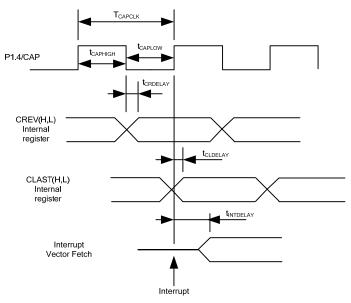


Figure 16 CAPTURE Input AC Timing

Unless specified, Ta = 25°C

Symbol	Parameter	Min	Тур	Max	Unit
T _{CAPCLK}	CAPTURE input period	8	-	-	SYSCLK
t _{CAPHIGH}	CAPTURE input high time	4	-	-	SYSCLK
t _{CAPLOW}	CAPTURE input low time	4	-	-	SYSCLK
t _{CRDELAY}	CAPTURE falling edge to capture register latch time	-	-	4	SYSCLK
t _{CLDELAY}	CAPTURE rising edge to capture register latch time	-	-	4	SYSCLK
t _{INTDELAY}	CAPTURE input interrupt latency time	-	-	4	SYSCLK

Table 18. CAPTURE AC Timing

7.11 JTAG AC Timing

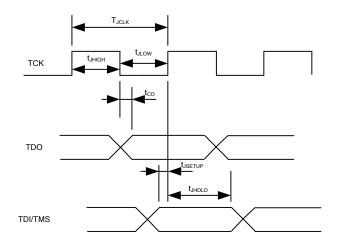


Figure 17 JTAG AC Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{JCLK}	TCK Period	-	-	50	MHz
t _{JHIGH}	TCK High Period	10	-	-	nsec
$t_{\sf JLOW}$	TCK Low Period	10	-	-	nsec
t _{co}	TCK to TDO propagation delay time	0	-	5	nsec
t _{JSETUP}	TDI/TMS setup time	4	-	-	nsec
t _{JHOLD}	TDI/TMS hold time	0	-	-	nsec

Table 19. JTAG AC Timing

7.12 OTP Programming Timing

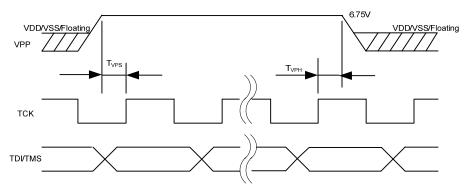


Figure 18 OTP Programming Timing

Unless specified, Ta = 25°C.

Symbol	Parameter	Min	Тур	Max	Unit
T _{VPS}	VPP Setup Time	10	-	1	nsec
T_{VPH}	VPP Hold Time	15	-	-	nsec

Table 20. OTP Programming Timing

8 I/O Structure

The following figure shows the motor PWM and digital I/O structure

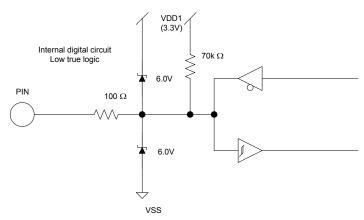


Figure 19 All digital I/O and motor PWM output

The following figure shows RESET and GATEKILL I/O structure.

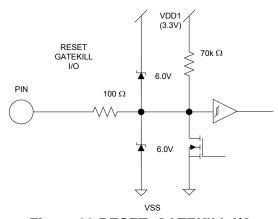


Figure 20 RESET, GATEKILL I/O

The following figure shows the analog input structure.

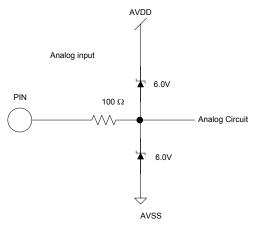


Figure 21 Analog input

The following figure shows all analog operational amplifier output pins and AREF pin I/O structure.

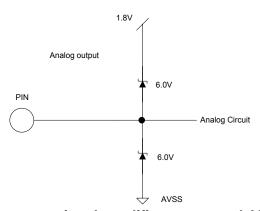


Figure 22 Analog operational amplifier output and AREF I/O structure

The following figure shows the VPP pin I/O structure $$^{\mbox{\tiny VPP input}}$$

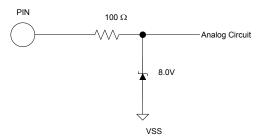


Figure 23 VPP programming pin

The following figure shows the VSS, AVSS and PLLVSS pin structure

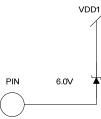


Figure 24 VSS, AVSS and PLLVSS pin structure

The following figure shows the VDD1, VDD2, AVDD and PLLVDD pin structure

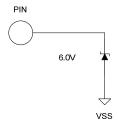


Figure 25 VDD1, VDD2, AVDD and PLLVDD pin structure

The following figure shows the XTAL0 and XTAL1 pins structure

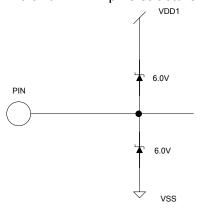
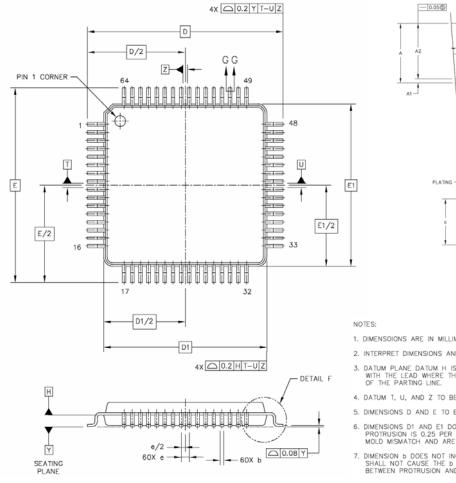
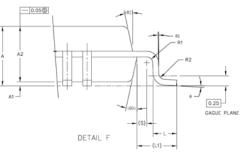


Figure 26 XTAL0/XTAL1 pins structure

9 Pin List

Pin		Internal IC	Pin			
Number	Pin Name	Pull-up /Pull-down	Туре	Description		
1	XTAL0		I	Crystal input		
2	XTAL1		0	Crystal output		
3	P1.0/T2		I/O	Discrete programmable I/O or Timer/Counter 2 input		
4	P1.1/RXD		I/O	Discrete programmable I/O or UART receive input		
5	P1.2/TXD		I/O	Discrete programmable I/O or UART transmit output		
6	P1.3/SYNC/ SCK		I/O	Discrete programmable I/O or SYNC output or SPI clock		
7	P1.4/CAP		I/O	Discrete programmable I/O or Capture Timer input		
8	P1.5		I/O	Discrete programmable I/O		
9	P1.6		I/O	Discrete programmable I/O		
10	P1.7		I/O	Discrete programmable I/O		
11	VDD2		Р	1.8V digital power		
12	VSS		Р	Digital common		
13	VDD1		Р	3.3V digital power		
14	P2.0/NMI		I/O	Discrete programmable I/O or Non-maskable Interrupt input		
15	P2.1		I/O	Discrete programmable I/O		
16	P2.2		I/O	Discrete programmable I/O		
17	P2.3		I/O	Discrete programmable I/O		
18	P2.4		I/O	Discrete programmable I/O		
19	P2.5		I/O	Discrete programmable I/O		
20	P2.6/ AOPWM0		I/O	Discrete programmable I/O or PWM 0 output		
21	P2.7/ AOPWM1		I/O	Discrete programmable I/O or PWM 1 output		
22	VDD2		Р	1.8V digital power		
23	VSS		Р	Digital common		
24	AIN0		I	Analog input channel 0, 0-1.2V range, needs to be pulled down to AVSS if unused		
25	AVDD		Р	1.8V analog power		
26	AVSS		Р	Analog common		
27	AIN1		I	Analog input channel 1, 0-1.2V range, needs to be pulled down to AVSS if unused		
28	CMEXT		0	Unbuffered 0.6V output. Capacitor needs to be connected.		
29	AREF		0	Analog reference voltage output (0.6V)		
30	IFB-		I	Single shunt current sensing OP amp input (-)		
31	IFB+		I	Single shunt current sensing OP amp input (+)		


Pin Number	Pin Name	Internal IC Pull-up	Pin Type	Description		
		/Pull-down				
32	IFBO		0	Single shunt current sensing OP amp output		
33	VAC+		I	AC input voltage sensing OP amp input (+)		
34	VAC-		I	AC input voltage sensing OP amp input (-)		
35	VACO		0	AC input voltage sensing OP amp output		
36	IFPCO		0	PFC shunt current sensing OP amp output		
37	IFPC+		I	PFC shunt current sensing OP amp input (+)		
38	IFPC-		I	PFC shunt current sensing OP amp input (-)		
39	VSS		Р	Digital common		
40	VDD1		Р	3.3V digital power		
41	GATEKILL		I	PWM shutdown input, 2-µsec digital filter, configurable either high or low true.		
42	PWMWL	70 kΩ Pull	0	PWM gate drive for phase W low side,		
		up		configurable either high or low true		
43	PWMWH	70 kΩ Pull	0	PWM gate drive for phase W high side,		
		up		configurable either high or low true		
44	PWMVL	70 kΩ Pull	0	PWM gate drive for phase V low side,		
		up		configurable either high or low true		
45	PWMVH	70 kΩ Pull	0	PWM gate drive for phase V high side,		
		up		configurable either high or low true		
46	PWMUL	70 kΩ Pull	0	PWM gate drive for phase U low side,		
		up		configurable either high or low true		
47	PWMUH	70 kΩ Pull	0	PWM gate drive for phase U high side,		
		up		configurable either high or low true		
48	P3.0/INT2/ CS1		I/O	Discrete programmable I/O or external interrupt 2 input or SPI chip select 1		
49	P5.0/ PFCGKILL		I/O	Discrete programmable I/O or PFC PWM shutdown input, 2-µsec digital filter, configurable either high or low true.		
50	PFCPWM		0	PFC PWM output		
51	P3.1/ AOPWM2		I/O	Discrete programmable I/O or PWM analog		
52	P3.2/INT0		I/O	Discrete programmable I/O or Interrupt 0 input		
53	VSS		P	Digital common		
54	VDD1		P	3.3V digital power		
55	SCL/		I/O	I ² C clock output (open drain, need pull up) or SPI		
55	SO-SI/VPP		1/O P	data or OTP Programming		
56	SDA/CS0		I/O	I ² C data (open drain, need pull up) or SPI chip		
30	307/030		1,0	select 0		
57	P5.1/TMS		I/O	Discrete programmable I/O or JTAG test mode		
	DE CATO		1/0	select		
58	P5.2/TDO		I/O	Discrete programmable I/O or JTAG test data output		
59	P5.3/TDI		I/O	Discrete programmable I/O or JTAG test data input		
60	TCK		I	JTAG test clock		



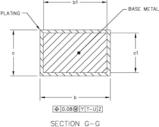
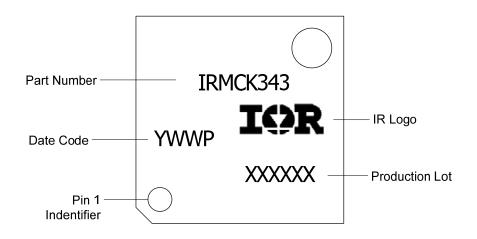

Pin Number	Pin Name	Internal IC Pull-up /Pull-down	Pin Type	Description
61	TSTMOD	58 kΩ pull down	Ι	Test mode. Must be tied to VSS. Factory use only
62	RESET	down	I/O	Reset, low true, Schmitt trigger input
63	PLLVDD		Р	1.8V PLL power
64	PLLVSS		Р	PLL ground

Table 21. Pin List

Package Dimensions



- 1. DIMENSOIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE DATUM H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUM T, U, AND Z TO BE DETERMINED AT DATUM PLANE H.
- 5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE DATUM Y.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE DATUM H.
- 7. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE 6 DIMENSION TO EXCEED 0.35. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.

DIM	MIN	MAX	DIM	MIN	MAX	DIM	MIN	MAX
Α		1.6	L1	1 F	REF			
A1	0.05	0.15	R1	0.1	0.2			
A2	1.35	1.45	R2	0.1	0.2			
b	0.17	0.27	S	0.2	REF			
b1	0.17	0.23	θ	0*	7°			
С	0.09	0.2	θ1	0°				
с1	0.09	0.16	θ2	12°	REF			
D	12 BSC		θ3	12°	REF			
D1	10 BSC							
е	0.5 BSC							
Е	12 BSC							
E1	10	BSC						
L	0.45	0.75						

11 Part Marking Information

12 Order Information

Lead-Free Part in 64-lead QFP Moisture Sensitivity Rating – MSL3

Part number	Order quantities
IRMCK343TR	1500 parts on tape and reel in dry pack
IRMCK343TY	1600 parts on trays (160 parts per tray) in dry pack

The LQFP-64 is MSL3 qualified
This product has been designed and qualified for the industrial level
Qualification standards can be found at www.irf.com www.irf.com www.irf.com www.irf.com www.irf.com www.irf.com http://www.irf.com www.irf.com http://www.irf.com www.irf.com www.irf.