Thermally-Enhanced High Power RF LDMOS FETs
 240 W, 1930 - 1990 MHz

Description

The PTFB192503EL and PTFB192503FL are 240-watt LDMOS FETs intended for use in multi-standard cellular power amplifier applications in the 1930 to 1990 MHz frequency band. Features include input and output matching, high gain, wide signal bandwidth and reduced memory effects for improved DPD correctability. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

PTFB192503EL
Package H-33288-6

PTFB192503FL
Package H-34288-4/2

Features

- Broadband internal input and output matching
- Enhanced for use in DPD error correction systems
- Typical two-carrier WCDMA performance, 30 V , 1990 MHz
- Average output power $=50 \mathrm{~W}$
- Linear gain $=19 \mathrm{~dB}$
- Drain efficiency = 28 \%
- Intermodulation distortion $=-35 \mathrm{dBc}$
- Typical CW performance, $1990 \mathrm{MHz}, 30 \mathrm{~V}$
- Output power at $\mathrm{P}_{1 \mathrm{~dB}}=240 \mathrm{~W}$
- Efficiency = 55\%
- Increased negative gate-source voltage range for improved performance in Doherty peaking amplifiers
- Integrated ESD protection. Human Body Model, Class 2 (minimum)
- Capable of handling 10:1 VSWR @ 30 V, 240 W (CW) output power
- Pb-free, RoHS-compliant

RF Characteristics

Two-carrier WCDMA Measurements (not subject to production test-verified by design/characterization in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.9 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=50 \mathrm{~W}$ average, $f_{1}=1980 \mathrm{MHz}, f_{2}=1990 \mathrm{MHz}, 3 \mathrm{GPP}$ signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average $=8: 1 \mathrm{~dB}$ @ 0.01% CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	-	19	-	dB
Drain Efficiency	$\eta \mathrm{D}$	-	28	-	$\%$
Intermodulation Distortion	IMD	-	-35	-	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!
Data Sheet
1 of 15
Rev. 09, 2010-11-09

PTFB192503EL PTFB192503FL

RF Characteristics (cont.)

Two-tone Measurements (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.9 \mathrm{~A}, \mathrm{P}_{\mathrm{OUT}}=220 \mathrm{~W}$ PEP, $f=1990 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	17	18	-	dB
Drain Efficiency	$\eta \mathrm{D}$	40	41.5	-	$\%$
Intermodulation Distortion	IMD	-	-29	-27	dBc

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.03	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.9 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{GS}}$	2.3	2.8	3.3	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 200 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	0.262	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Package Type	Package Description	Shipping
PTFB192503EL V1	H-33288-6	Thermally-enhanced slotted flange, single-ended	Tray
PTFB192503EL V1 R250	H-33288-6	Thermally-enhanced slotted flange, single-ended	Tape \& Reel, 250 pcs
PTFB192503FL V2	H-34288-4/2	Thermally-enhanced earless flange, single-ended	Tray
PTFB192503FL V2 R250	H-34288-4/2	Thermally-enhanced earless flange, single-ended	Tape \& Reel, 250 pcs

Typical Performance (data taken in a production test fixture)

Power Sweep, CW
Gain \& Efficiency vs. Output Power
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.85 \mathrm{~A}, f=1990 \mathrm{MHz}$

Two-tone Broadband

 Gain, Efficiency \& Return Lossvs. Frequency

$$
\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.85 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=110 \mathrm{~W}
$$

PTFB192503EL PTFB192503FL

Typical Performance (cont.)

PTFB192503EL PTFB192503FL

Typical Performance (cont.)

PTFB192503EL PTFB192503FL

Broadband Circuit Impedance

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	$\mathbf{j X}$	\mathbf{R}	$\mathbf{j X}$
1900	2.63	-3.92	1.36	-4.49
1930	2.56	-3.67	1.33	-4.35
1960	2.48	-3.44	1.31	-4.21
1990	2.42	-3.21	1.28	-4.07
2020	2.35	-2.98	1.26	-3.93

See next page for reference circuit information

PTFB192503EL PTFB192503FL

Reference Circuit

Reference circuit input schematic for $f=1990 \mathrm{MHz}$

PTFB192503EL PTFB192503FL

Reference Circuit (cont.)

Reference circuit output schematic for $f=1990 \mathrm{MHz}$
See next page for more reference circuit information

PTFB192503EL PTFB192503FL

Reference Circuit (cont.)

Description

DUT	PTFB192503EL or PTFB192503FL
PCB	$0.76 \mathrm{~mm}[.030 "]$ thick, $\varepsilon \mathrm{Er}=3.48$, Rogers 4350, 1 oz. copper

Electrical Characteristics at 1990 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL224	$0.000 \lambda, 144.35 \Omega$	$\mathrm{W} 1=0.025, \mathrm{~W} 2=0.025, \mathrm{~W} 3=0.025$	$\mathrm{W} 1=1, \mathrm{~W} 2=1, \mathrm{~W} 3=1$
TL101	$0.037 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=3.358$	$\mathrm{W}=65, \mathrm{~L}=132$
TL102	$0.053 \lambda, 9.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=4.470$	W = 550, L= 176
TL103	$0.033 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=3.018$	W = 65, L = 119
TL104		$\begin{aligned} & \mathrm{W} 1=13.970, \mathrm{~W} 2=0.762, \mathrm{~W} 3=13.970, \\ & \mathrm{~W} 4=0.762 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=550, \mathrm{~W} 2=30, \mathrm{~W} 3=550, \\ & \mathrm{~W} 4=30 \end{aligned}$
TL105, TL106		$\mathrm{W}=0.762$	W = 30
TL107, TL108	$0.011 \lambda, 78.27 \Omega$	$\mathrm{W} 1=0.762, \mathrm{~W} 2=0.762, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=40$
TL109		$\mathrm{W} 1=1.651, \mathrm{~W} 2=2.032$	$\mathrm{W} 1=65, \mathrm{~W} 2=80$
TL110, TL130	$0.015 \lambda, 38.82 \Omega$	$\mathrm{W}=2.540, \mathrm{~L}=1.321$	W = 100, L = 52
TL111	$0.071 \lambda, 92.53 \Omega$	$\mathrm{W}=0.508, \mathrm{~L}=6.756$	$\mathrm{W}=20, \mathrm{~L}=266$
TL112	$0.016 \lambda, 68.02 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.524$	W = 40, L = 60
TL113, TL133	$0.024 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=2.286$	W $=30, \mathrm{~L}=90$
TL114, TL125	$0.023 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=2.159$	W = 30, L = 85
TL115, TL116	$0.001 \lambda, 68.02 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=0.127$	$W=40, L=5$
TL117, TL118	$0.014 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=1.270$	W $=30, \mathrm{~L}=50$
TL119	$0.024 \lambda, 9.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=1.981$	W = 550, L = 78
TL120, TL121	$0.007 \lambda, 68.02 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=0.686$	W = 40, L = 27
TL122, TL123	$0.125 \lambda, 78.27 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=11.684$	$\mathrm{W}=30, \mathrm{~L}=460$
TL124	$0.008 \lambda, 45.17 \Omega$	$\mathrm{W}=2.032, \mathrm{~L}=0.762$	W $=80, \mathrm{~L}=30$
TL126 (taper)	$0.030 \lambda, 9.67 \Omega / 51.58 \Omega$	$\mathrm{W} 1=13.970, \mathrm{~W} 2=1.651, \mathrm{~L}=2.515$	$\mathrm{W} 1=550, \mathrm{~W} 2=65, \mathrm{~L}=99$
TL127, TL132	$0.011 \lambda, 68.02 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=40$
TL128	$0.022 \lambda, 78.27 \Omega$	$\mathrm{W} 1=0.762, \mathrm{~W} 2=0.762, \mathrm{~W} 3=2.032$	$\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=80$
TL129	$0.077 \lambda, 9.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=6.502$	$\mathrm{W}=550, \mathrm{~L}=256$
TL131	$0.016 \lambda, 68.02 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.524$	W = 40, L = 60
TL134	$0.022 \lambda, 78.27 \Omega$	$\mathrm{W} 1=0.762, \mathrm{~W} 2=0.762, \mathrm{~W} 3=2.032$	$\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=80$
TL135, TL136	$0.016 \lambda, 92.53 \Omega$	$\mathrm{W} 1=0.508, \mathrm{~W} 2=0.508, \mathrm{~W} 3=1.524$	$\mathrm{W} 1=20, \mathrm{~W} 2=20, \mathrm{~W} 3=60$

table continued on page 10

PTFB192503EL PTFB192503FL

Reference Circuit (cont.)

Electrical Characteristics at 1990 MHz			
Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output			
TL201, TL202, TL203, TL213	$0.026 \lambda, 34.08 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=2.286$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=90$
TL204	$0.012 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=1.118$	$\mathrm{W}=65, \mathrm{~L}=44$
TL205	$0.084 \lambda, 6.86 \Omega$	$\mathrm{W}=20.320, \mathrm{~L}=6.985$	$\mathrm{W}=800, \mathrm{~L}=275$
TL206	$0.029 \lambda, 23.60 \Omega$	$\mathrm{W}=4.928, \mathrm{~L}=2.540$	$\mathrm{W}=194, \mathrm{~L}=100$
TL207	$0.029 \lambda, 23.79 \Omega$	W = 4.877, L = 2.540	W = 192, L = 100
TL208, TL209, TL212	$0.034 \lambda, 34.08 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=3.048$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=120$
TL210		$\mathrm{W} 1=12.700, \mathrm{~W} 2=17.780$	$\mathrm{W} 1=500, \mathrm{~W} 2=700$
TL211 (taper)	$0.019 \lambda, 6.86 \Omega / 8.37 \Omega$	$\mathrm{W} 1=20.320, \mathrm{~W} 2=16.383, \mathrm{~L}=1.575$	$\mathrm{W} 1=800, \mathrm{~W} 2=645, \mathrm{~L}=62$
TL214, TL220	$0.009 \lambda, 34.08 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=0.762$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=30$
TL215, TL217	$0.118 \lambda, 34.08 \Omega$	$\mathrm{W}=3.048, \mathrm{~L}=10.516$	$W=120, L=414$
TL216	$0.019 \lambda, 34.08 \Omega$	$\mathrm{W}=3.048, \mathrm{~L}=1.702$	$\mathrm{W}=120, \mathrm{~L}=67$
TL218	$0.025 \lambda, 34.08 \Omega$	W = 3.048, L = 2.210	W = 120, L = 87
TL219	$0.034 \lambda, 34.08 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=3.048$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=120$
TL221 (taper)	$0.041 \lambda, 8.37 \Omega$ / 19.45Ω	$\mathrm{W} 1=16.383, \mathrm{~W} 2=6.248, \mathrm{~L}=3.429$	$\mathrm{W} 1=645, \mathrm{~W} 2=246, L=135$
TL222	$0.007 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=0.635$	W = 65, L= 25
TL223	$0.011 \lambda, 45.17 \Omega$	$\mathrm{W}=2.032, \mathrm{~L}=1.016$	W = 80, L= 40
TL224, TL225, TL226, TL228		$\mathrm{W}=0.002, \mathrm{ANG}=90, \mathrm{R}=0.002$	W = 2, ANG = 3543307, R = 70
TL227	$0.014 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=1.270$	W = 65, L = 50
TL229 (taper)	$0.019 \lambda, 19.45 \Omega / 51.58 \Omega$	$\mathrm{W} 1=6.248, \mathrm{~W} 2=1.651, \mathrm{~L}=1.651$	W 1 = 246, W2 $=65, \mathrm{~L}=65$
TL230	$0.000 \lambda, 19.45 \Omega$	W = 6.248, L = 0.025	W = 246, L = 1
TL231	$0.000 \lambda, 8.37 \Omega$	$\mathrm{W}=16.383, \mathrm{~L}=0.025$	W = 645, L=1
TL232, TL233	$0.000 \lambda, 146.88 \Omega$	$\mathrm{W}=0.025, \mathrm{~L}=0.025$	$\mathrm{W}=1, \mathrm{~L}=1$
TL234		$\begin{aligned} & \mathrm{W} 1=20.320, \mathrm{~W} 2=0.025, \mathrm{~W} 3=20.320, \\ & \mathrm{~W} 4=0.025 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=800, \mathrm{~W} 2=1, \mathrm{~W} 3=800, \\ & \mathrm{~W} 4=1 \end{aligned}$
TL235	$0.005 \lambda, 6.86 \Omega$	$\mathrm{W}=20.320, \mathrm{~L}=0.406$	$W=800, L=16$
TL236	$0.014 \lambda, 51.58 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=1.270$	$\mathrm{W}=65, \mathrm{~L}=50$

PTFB192503EL PTFB192503FL

Reference Circuit (cont.)

Circuit Assembly Information

Test Fixture Part No. LTN/PTFB192503EF
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower

Reference circuit assembly diagram (not to scale)

PTFB192503EL PTFB192503FL

Reference Circuit (cont.)

Component	Description	Suggested Manufacturer	P/N
Input			
C101	Chip capacitor, 10 pF	ATC	ATC100B100FW500XB
C102, C107	Chip capacitor, 8.2 pF	ATC	ATC100A8R2BW150XB
C103, C104	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1818-2-ND
C105, C106	Chip capacitor, $2.2 \mu \mathrm{~F}$	Digi-Key	445-1447-2-ND
C801, C802, C803	Capacitor, 1000 pF	Digi-Key	PCC1772CT-ND
R101, R102, R802, R803	Resistor, 10Ω	Digi-Key	P10ECT-ND
R801	Resistor, 100Ω	Digi-Key	P100ECT-ND
R804	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R805	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
S1	Transistor	Digi-Key	BCP5616TA-ND
S2	Voltage Regulator	Digi-Key	LM78L05ACM-ND
S3	Potentiometer, $2 \mathrm{k} \Omega$	Digi-Key	3224W-202ECT-ND
Output			
C201, C206	Chip capacitor, $0.1 \mu \mathrm{~F}$	Digi-Key	399-1267-2-ND
C202, C203	Chip capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1818-2-ND
C204, C205	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	281M5002106K
C207	Capacitor, 10 pF	ATC	ATC100B100FW500XB
C208, C209	Chip capacitor, $1 \mu \mathrm{~F}$	Digi-Key	445-1411-2-ND
C210, C211	Chip capacitor, $2.2 \mu \mathrm{~F}$	Digi-Key	445-1447-2-ND
C212, C213	Chip capacitor, 1.1 pF	ATC	ATC100A1R1BW150XB

Package Outline Specifications

Package H-33288-6

Diagram Notes—unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
2. Primary dimensions are mm . Alternate dimensions are inches.
3. All tolerances ± 0.127 [.005] unless specified otherwise.
4. Pins: $G=$ gate, $S=$ source, $D=$ drain, $V=V_{D D}, E, F=N . C$.
5. Lead thickness: $0.10+0.051 /-0.025 \mathrm{~mm}[.004+0.002 /-0.001$ inch $]$.
6. Gold plating thickness: 0.25 micron [10 microinch] max.

Package Outline Specifications (cont.)

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

Revision History:	2010-11-09	Data Sheet
Previous Version: \quad 2010-10-07, Data Sheet		
Page	Subjects (major changes since last revision)	
$1,2,13$	Changed eared flange package type	
1	Updated VSWR specification to 10:1	

```
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at:
+1877 465 3667 (1-877-GO-LDMOS) USA
or +14087760600 International
```


Edition 2010-11-09

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Data Sheet

