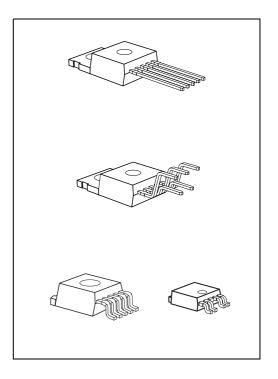


Low Drop Voltage Regulator


TLE 4276

Features

- 5 V, 8.5 V, 10 V or variable output voltage
- Output voltage tolerance ≤ ±4%
- 400 mA current capability
- Low-drop voltage
- Inhibit input
- Very low current consumption
- Short-circuit-proof
- Reverse polarity proof
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)
- AEC Qualified

Туре	Package	Туре	Package
TLE 4276 V50	PG-TO220-5-11	TLE 4276 GV50	PG-TO263-5-1
TLE 4276 V85	PG-TO220-5-11	TLE 4276 GV85	PG-TO263-5-1
TLE 4276 V10	PG-TO220-5-11	TLE 4276 GV10	PG-TO263-5-1
TLE 4276 V	PG-TO220-5-11	TLE 4276 GV	PG-TO263-5-1
TLE 4276 SV50	PG-TO220-5-12	TLE 4276 DV50	PG-TO252-5-11
TLE 4276 SV85	PG-TO220-5-12	TLE 4276 DV	PG-TO252-5-11
TLE 4276 SV	PG-TO220-5-12		

Data Sheet 1 Rev. 2.7, 2007-10-23

Functional Description

The TLE 4276 is a low-drop voltage regulator in a TO package. The IC regulates an input voltage up to 40 V to $V_{\rm Q,nom}$ = 5.0 V (V50), 8.5 V (V85), 10 V (V10) and adjustable voltage (V). The maximum output current is 400 mA. The IC can be switched off via the inhibit input, which causes the current consumption to drop below 10 μ A. The IC is short-circuit-proof and includes temperature protection which turns off the device at overtemperature.

Dimensioning Information on External Components

The input capacitor $C_{\rm l}$ is necessary for compensation of line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm l}$, the oscillating of input inductivity and input capacitance can be damped. The output capacitor $C_{\rm Q}$ is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_{\rm Q} \geq$ 22 μF and an ESR of \leq 3 Ω within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

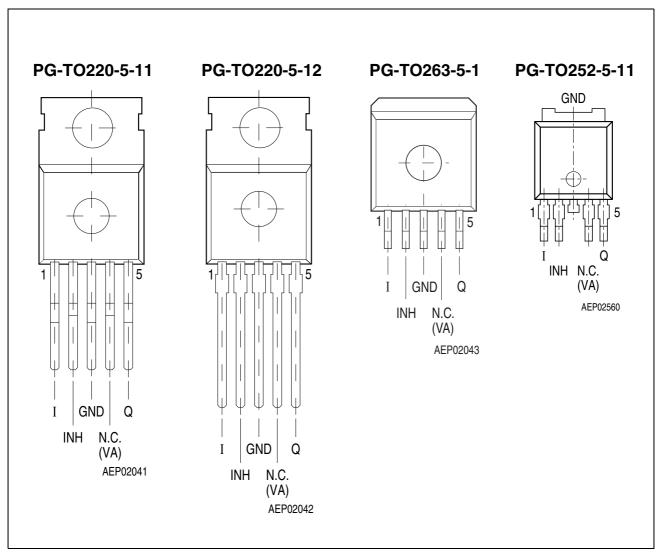


Figure 1 Pin Configuration (top view)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	I	Input; block to ground directly at the IC with a ceramic capacitor.
2	INH	Inhibit; low-active input.
3	GND	Ground
4	N.C. VA	Not connected for V50, V85, V10 Voltage Adjust Input; only for adjustable version. Connect an external voltage divider to determine the output voltage.
5	Q	Output; block to GND with a \geq 22 μ F capacitor, ESR \leq 3 Ω at 10 kHz
Heatsink		Connect to GND.

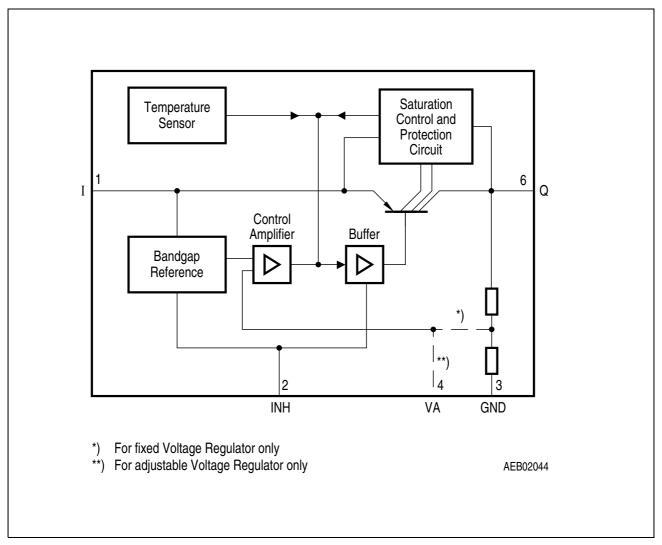


Figure 2 Block Diagram

Table 2 Absolute Maximum Ratings

Parameter	Symbol	Limi	t Values	Unit	Test Condition	
		Min.	Max.			
Input I			•		•	
Voltage	V_{l}	-42	45	V	_	
Current	I_{I}	_	_	_	Internally limited	
Inhibit INH					•	
Voltage	V_{INH}	-42	45	V	_	
Voltage Adjust Input V	A			•		
Voltage	$V_{\sf VA}$	-0.3	10	V	_	
Output Q			·			
Voltage	V_{Q}	-1.0	40	V	_	
Current	I_{Q}	_	_	_	Internally limited	
Ground GND				•		
Current	I_{GND}	_	100	mA	_	
Temperature						
Junction temperature	$T_{ m j}$	-40	150	°C	_	
Storage temperature	$T_{ m stg}$	-50	150	°C	_	

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Table 3 ESD Rating

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD Capability	$V_{ESD,HBM}$	2000	_	V	Human Body Model

Table 4 Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks	
		Min.	Max.			
Input voltage	V _I	$V_{\rm Q}$ + 0.5	40	V	Fixed voltage devices V50, V85, V10	
Input voltage	V_{l}	$V_{\rm Q}$ + 0.5	40	V	Variable device V	
Input voltage	V _I	4.5 V	40	V	Variable device V, $V_{\rm Q}$ < 4 V	
Junction temperature	T_{j}	-40	150	°C	_	
Thermal Resistance				•		
Junction ambient	$R_{\text{thj-a}}$	_	65	K/W	TO220	
Junction ambient	$R_{\text{thj-a}}$	_	80	K/W	TO252, TO263 ¹⁾	
Junction case	R_{thj-c}	_	4	K/W	_	

¹⁾ Package mounted on PCB $80 \times 80 \times 1.5$ mm³; 35μ Cu; 5μ Sn; Footprint only; zero airflow.

 Table 5
 Characteristics

 $V_{\rm I}$ = 13.5 V; -40 $^{\circ}{\rm C}$ < $T_{\rm j}$ < 150 $^{\circ}{\rm C}$ (unless otherwise specified)

Parameter	Sym-	Lir	Limit Values			Measuring	Measuring
	bol	Min.	Тур.	Max.		Condition	Circuit
Output voltage	V_{Q}	4.8	5.0	5.2	V	$\begin{array}{l} {\rm V50\text{-}Version} \\ {\rm 5~mA} < I_{\rm Q} < 400~{\rm mA} \\ {\rm 6~V} < V_{\rm I} < 28~{\rm V} \\ \end{array}$	1
Output voltage	V_{Q}	4.8	5.0	5.2	V	$\begin{array}{l} {\rm V50\text{-}Version} \\ {\rm 5~mA} < I_{\rm Q} < 200~{\rm mA} \\ {\rm 6~V} < V_{\rm I} < 40~{\rm V} \\ \end{array}$	1
Output voltage	V_{Q}	8.16	8.50	8.84	V	$ \begin{array}{l} {\sf V85\text{-}Version} \\ {\sf 5~mA} < I_{\sf Q} < {\sf 400~mA} \\ {\sf 9.5~V} < V_{\sf I} < {\sf 28~V} \\ \end{array} $	1
Output voltage	V_{Q}	8.16	8.50	8.84	V		1
Output voltage	V_{Q}	9.6	10.0	10.4	V	$ \begin{array}{l} {\rm V10\text{-}Version} \\ {\rm 5~mA} < I_{\rm Q} < 400~{\rm mA} \\ {\rm 11~V} < V_{\rm I} < 28~{\rm V} \\ \end{array} $	1
Output voltage	V_{Q}	9.6	10.0	10.4	V	$ \begin{array}{l} {\rm V10\text{-}Version} \\ {\rm 5~mA} < I_{\rm Q} < 200~{\rm mA} \\ {\rm 11~V} < V_{\rm I} < 40~{\rm V} \\ \end{array} $	1
Output voltage tolerance	ΔV_{Q}	-4	_	4	%	$\label{eq:V-Version} \begin{split} &V\text{-Version}\\ &R_2<50~\mathrm{k}\Omega\\ &V_\mathrm{Q}+1~\mathrm{V}\leq V_\mathrm{I}\leq40~\mathrm{V}\\ &V_\mathrm{I}>4.5~\mathrm{V}\\ &5~\mathrm{mA}\leq I_\mathrm{Q}\leq400~\mathrm{mA} \end{split}$	1
Output current limitation ¹⁾	I_{Q}	400	600	1100	mA	_	1
Current consumption; $I_q = I_l - I_Q$	I_{q}	_	_	10	μΑ	$V_{INH} = 0 \; V;$ $T_{j} \leq 100 \; ^{\circ}C$	1
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	100	220	μΑ	$I_{\rm Q}$ = 1 mA	1
Current consumption; $I_{q} = I_{l} - I_{Q}$	I_{q}	_	5	10	mA	$I_{\rm Q}$ = 250 mA	1

Table 5Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; -40 $^{\circ}{\rm C}$ < $T_{\rm j}$ < 150 $^{\circ}{\rm C}$ (unless otherwise specified)

Parameter	Sym-	Limit Values			Unit	Measuring	Measuring
	bol	Min.	Тур.	Max.		Condition	Circuit
Current consumption; $I_q = I_l - I_Q$	I_{q}	_	15	25	mA	I _Q = 400 mA	1
Drop voltage ¹⁾	V_{DR}	_	250	500	mV	$V50, V85, V10 \\ I_{\rm Q} = 250 \ {\rm mA} \\ V_{\rm DR} = V_{\rm I} - V_{\rm Q}$	1
Drop voltage ¹⁾	V_{DR}	_	250	500	mV	variable devices $I_{\rm Q} = 250 \text{ mA}$ $V_{\rm I} > 4.5 \text{ V}$ $V_{\rm DR} = V_{\rm I} - V_{\rm Q}$	1
Load regulation	$\Delta V_{Q,Lo}$	_	5	35	mV	$I_{\rm Q}$ = 5 mA to 400 mA	1
Line regulation	$\Delta V_{Q,Li}$	_	15	25	mV	$\Delta V_{\rm I}$ = 12 V to 32 V $I_{\rm Q}$ = 5 mA	1
Power supply ripple rejection	PSRR	_	54	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp	1
Temperature output voltage drift	$\mathrm{d}V_{\mathrm{Q}}/\mathrm{d}T$	_	0.5	_	_	_	mV/K
Inhibit							
Inhibit on voltage	V_{INH}	_	2	3.5	V	<i>V</i> _Q ≥ 4.9 V	1
Inhibit off voltage	V_{INH}	0.5	1.7	_	V	$V_{\rm Q} \le 0.1 \text{ V}$	1
Input current	I_{INH}	5	10	20	μΑ	V_{INH} = 5 V	1

¹⁾ Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 13.5 V.

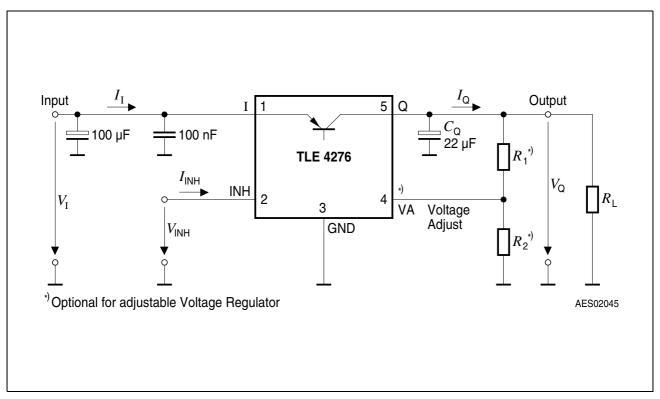


Figure 3 Measuring Circuit

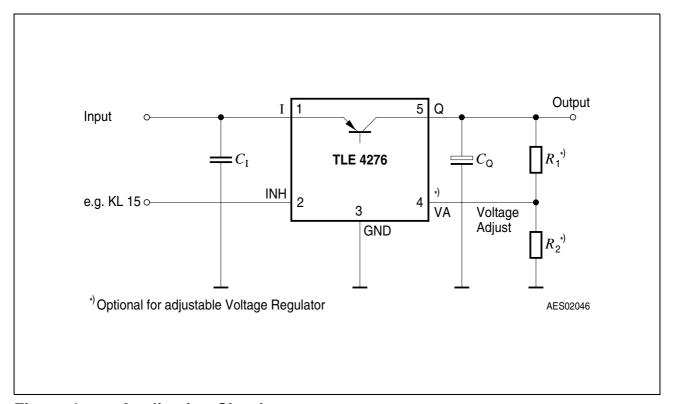


Figure 4 Application Circuit

Application Information for Variable Output Regulator TLE 4276 V, SV, DV, GV

The output voltage of the TLE 4276 V can be adjusted between 2.5 V and 20 V by an external output voltage divider, closing the control loop to the voltage adjust pin VA.

The voltage at pin VA is compared to the internal reference of typical 2.5 V in an error amplifier. It controls the output voltage.

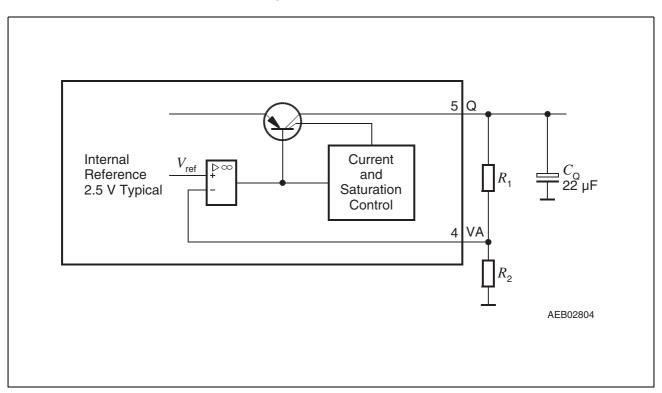


Figure 5 Application Detail External Components at Output for Variable Voltage Regulator

The output voltage is calculated according to **Equation (1)**:

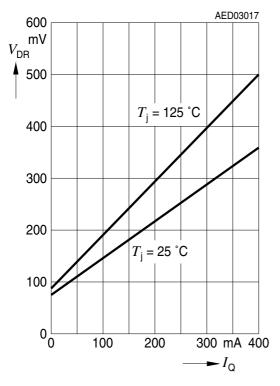
$$V_{Q} = (R_1 + R_2)/R_2 \times V_{ref}, \text{ neglecting } I_{VA}$$
 (1)

 $V_{\rm ref}$ is typically 2.5 V.

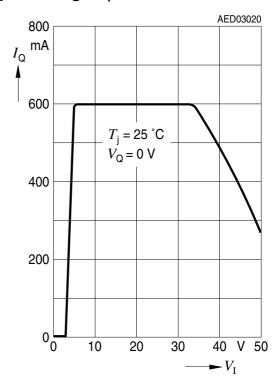
To avoid errors caused by leakage current I_{VA} , we recommend to choose the resistor value R_2 according to **Equation (2)**:

$$R_2 < 50 \text{ k}\Omega$$
 (2)

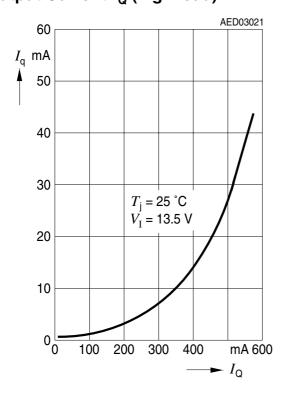
For a 2.5 V output voltage the output pin Q is directly connected to the adjust pin VA.

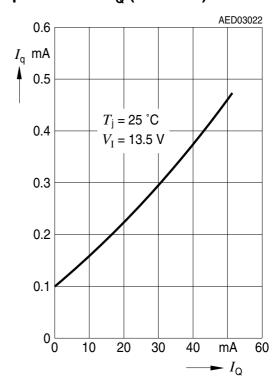

The accuracy of the resistors R_1 and R_2 add an additional error to the output voltage tolerance.

The operation range of the variable TLE 4276 V is $V_{\rm Q}$ + 0.5 V to 40 V. For internal biasing a minimum input voltage of 4.3 V is required. For output voltages below 4 V the voltage drop is 4.3 V - $V_{\rm O}$



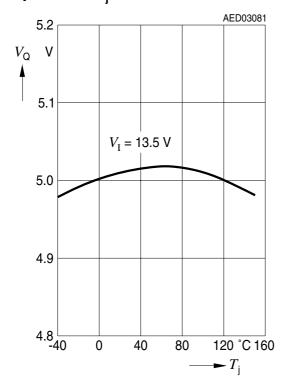
Typical Performance Characteristics (V50, V85 and V10):


$\begin{tabular}{ll} \begin{tabular}{ll} \be$

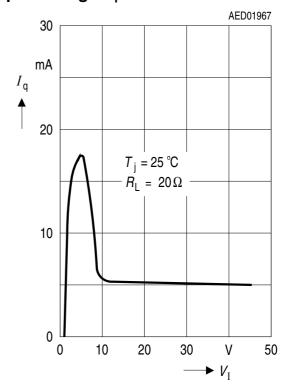

Max. Output Current I_{Q} versus Input Voltage V_{I}

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$ (high load)

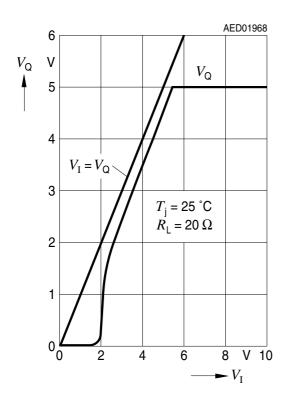
Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$ (low load)

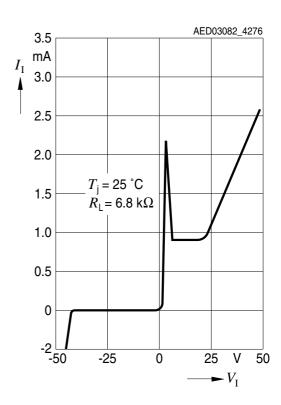


Data Sheet 11 Rev. 2.7, 2007-10-23

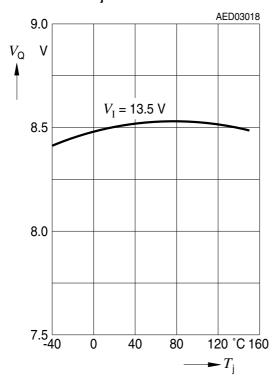


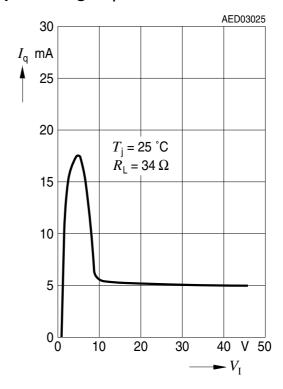
Typical Performance Characteristics for V50:


Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

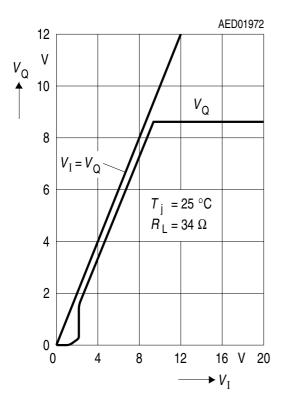

Current Consumption I_{q} versus Input Voltage V_{l}

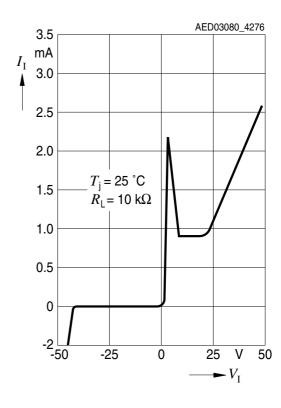
Low Voltage Behavior


High Voltage Behavior

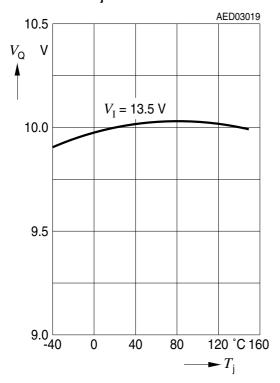


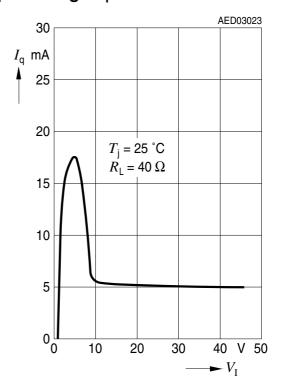
Typical Performance Characteristics for V85:


Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

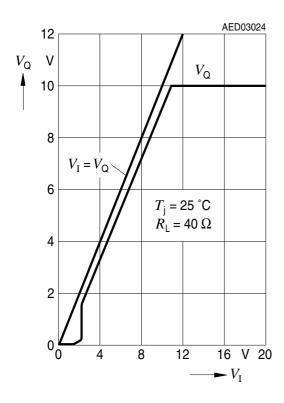

Current Consumption I_q versus Input Voltage V_1

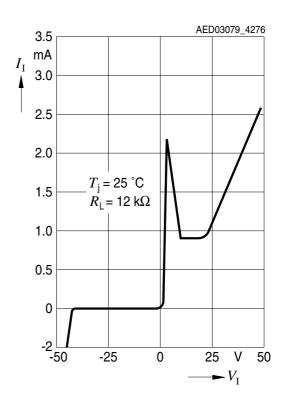
Low Voltage Behavior


High Voltage Behavior



Typical Performance Characteristics for V10:


Output Voltage V_{Q} versus Temperature T_{i}


Current Consumption I_{q} versus Input Voltage V_{l}

Low Voltage Behavior

High Voltage Behavior

Package Outlines

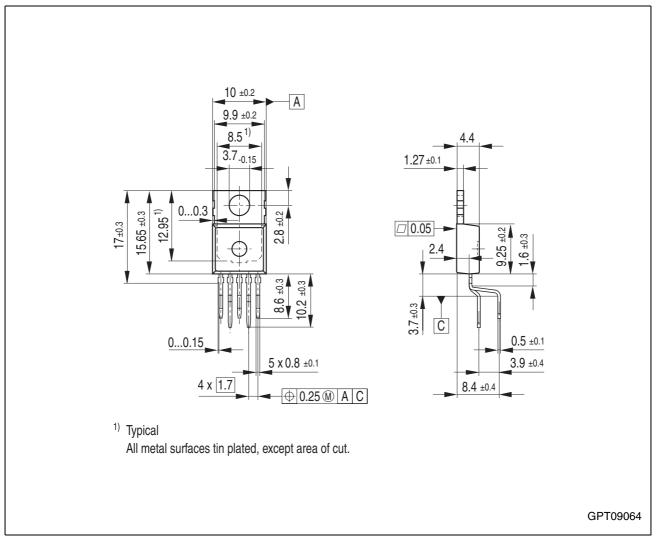
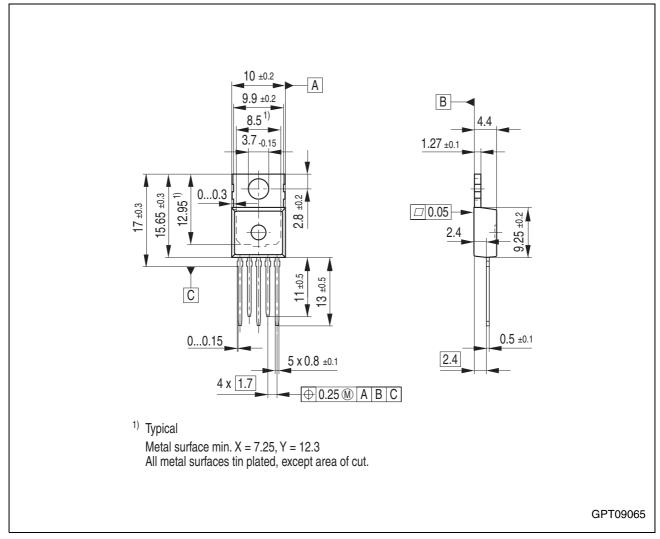


Figure 6 PG-TO220-5-11 (Plastic Transistor Single Outline)


Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Figure 7 PG-TO220-5-12 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

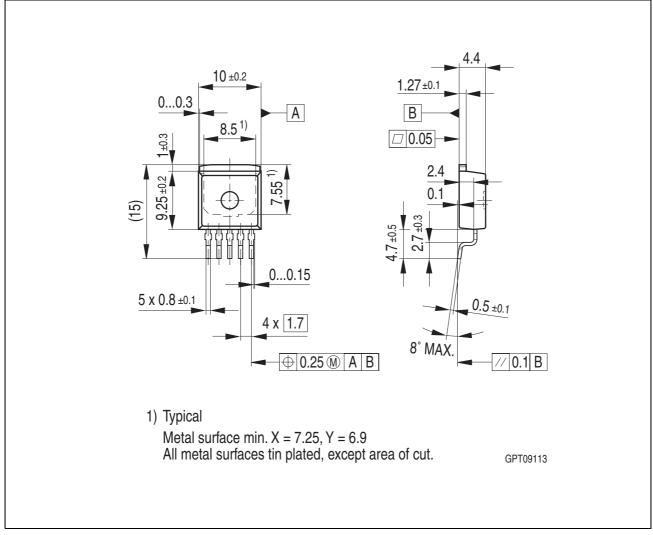
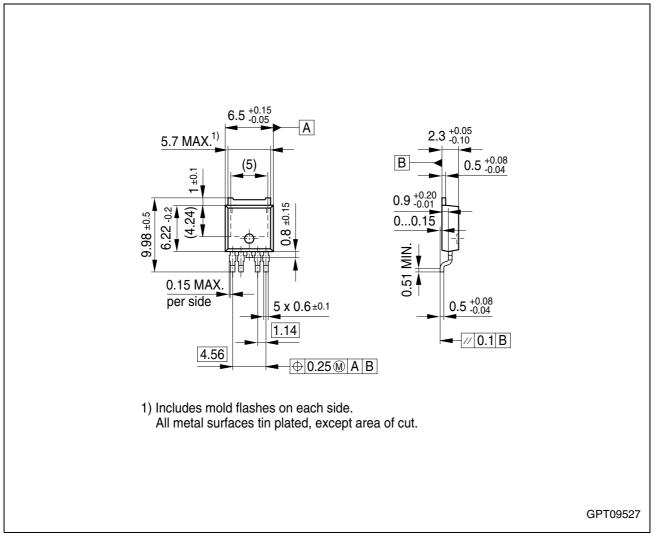


Figure 8 PG-TO263-5-1 (Plastic Transistor Single Outline)


Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Figure 9 PG-TO252-5-11 (Plastic Transistor Single Outline)

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Revision History

Version	Date	Changes
Rev. 2.7	2007-10-23	Page 17: Corrected package outline drawing of PG-TO263-5-1
Rev. 2.6	2007-03-20	Initial version of RoHS-compliant derivate of TLE 4276 Page 1: AEC certified statement added Page 1 and Page 15: RoHS compliance statement and Green product feature added Page 1 and Page 15: Package changed to RoHS compliant version Legal Disclaimer updated
Rev. 2.5	2004-12-23	Added ESD capability information in table "Maximum Ratings".

Edition 2007-10-23

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2007 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.