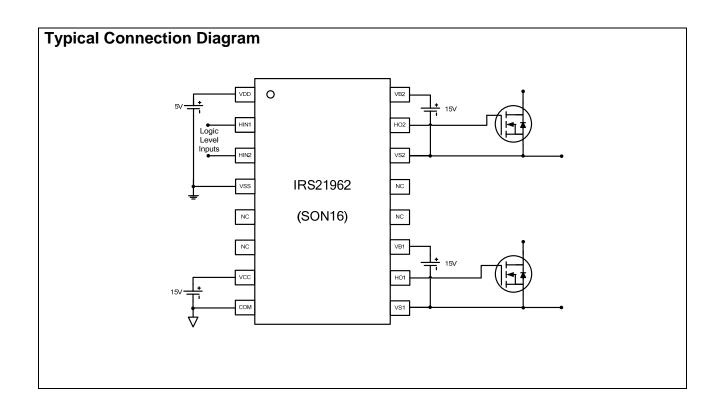
International **ISR** Rectifier

IRS21962S

Dual channel high-side drivers with floating input

Features


- Two independent high side output channels
- CMOS Schmitt trigger inputs with pull down resistor
- 5V compatible logic level inputs
- Immune to –Vs spike and tolerant to dVs/dt and dVss/dt
- Typical operating frequency 200kHz
- RoHS compliant

Product Summary

V _{OFFSET}	600 V
V _{OUT}	10 V – 20 V
I _{o+} & I _{o-} (typical)	0.5 A
t _{on} & t _{off} (typical)	90 ns

Package Type

Table of Contents	Page		
Description	3		
Qualification Information	4		
Absolute Maximum Ratings	5		
Recommended Operating Conditions	5		
Static Electrical Characteristics	6		
Dynamic Electrical Characteristics	6		
Functional Block Diagram			
Input/Output Pin Equivalent Circuit Diagram	9		
Lead Definitions	10		
Lead Assignments	10		
Package Details	11		
Tape and Reel Details	12		
Part Marking Information	13		
Ordering Information	14		

International

Description

The IRS21962 is a high voltage, high speed power MOSFET and IGBT driver with propagation delay matched output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The floating logic input is compatible with standard 5 V CMOS or LSTTL logic and can be operated up to 600 volts above the COM ground. The output driver feature a 500 mA high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration, which operates up to 600 V above COM ground.

Qualification Information[†]

		Ir	Industrial ^{††}			
		Comments: This family of ICs has passed JEDEC's				
Qualification Level		Industrial qualification.	IR's Consumer qualification			
		level is granted by exte	ension of the higher Industrial			
		level.	_			
Moisture Sensitivity Level		SOIC16N	MSL2 ^{†††} 260°C			
		SOICTON	(per IPC/JEDEC J-STD-020)			
	Machine Model	Class B				
ESD		(per JEDEC st	andard JESD22-A115)			
230	Human Rady Madal	Class 2				
	Human Body Model		(per EIA/JEDEC standard EIA/JESD22-A114)			
IO Latak Un Taat		Class 1, Level A				
IC Latch-Up Test		(per JESD78)				
RoHS Compliant		Yes				

† Qualification standards can be found at International Rectifier's web site <u>http://www.irf.com/</u>

++ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.

+++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages <u>referenced to COM</u>, which is the –200V DC bus provided externally.

Symbol	Definition	Min	Max	Units
VCC	Low side supply voltage	-0.3	25	V
VDD	Input logic supply voltage	-0.3	625	V
VSS	Input logic supply return	VDD-25	VDD+0.3	V
HIN1, HIN2	Input logic voltage	VSS-0.3	VDD+0.3	V
VB1, VB2	High side floating well positive supply voltage	-0.3	625	V
VS1	High side floating well negative supply voltage	VB1-25	VB1+0.3	V
VS2	High side floating well negative supply voltage	VB2-25	VB2+0.3	V
HO1	Floating gate drive output voltage	VS1-0.3	VB1+0.3	V
HO2	Floating gate drive output voltage	VS2-0.3	VB2+0.3	V
dVS/dt	Allowable VS1 or VS2 offset supply transient relative to COM	-	50	V/ns
dVSS/dt	Allowable VSS input supply transient relative to COM	-	50	V/ns
PD	Package Power Dissipation @ T _A <=+25°C	-	1	W
R _{θJA}	Thermal Resistance, Junction to Ambient	-	100	°C/W
TJ	Junction Temperature	-55	150	°C
Ts	Storage Temperature	-55	150	°C
TL	Lead temperature (Soldering, 10 seconds)	-	300	°C

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages <u>referenced to COM</u>, which is the –200V DC bus provided externally. The offset rating are tested with supplies of (VDD-VSS)=5V and (VCC-COM)=(VB1-VS1)= (VB2-VS2)=15V.

Symbol	Definition	Min	Max	Units
VCC	Low side supply voltage	10	20	V
VDD	Input logic supply voltage	VSS+4.5	VSS+5.5	V
VSS	Input logic supply offset voltage	-0.3	600	V
HIN1, HIN2	IN1~IN2 input voltage	VSS	VDD	V
VB1	High side floating well positive supply voltage	VS1+10	VS1+20	V
VB2	High side floating well positive supply voltage	VS2+20	V	
VS1, VS2	High side floating well negative supply voltage -5 600		600	V
HO1	Floating gate drive output voltage VS1 VB1		VB1	V
HO2	Floating gate drive output voltage VS2 VB2		VB2	V
T _A	Ambient Temperature	-40	125	°C

IRS21962S

International

Static Electrical Characteristics

(VDD-VSS)=5V and (VCC-COM)=(VBn-VSn)=15V. TA = 25°C. The parameters VIN,th+, VIN,th-, IIN+, IIN-, VDDUV+, and VDDUV- are referenced to VSS. The VBSUV+, VBSUV-, VOH, VOL, IO+, and IO-parameters are referenced to VS1 or VS2. The VCCUV+, VCCUV- parameters are referenced to COM.

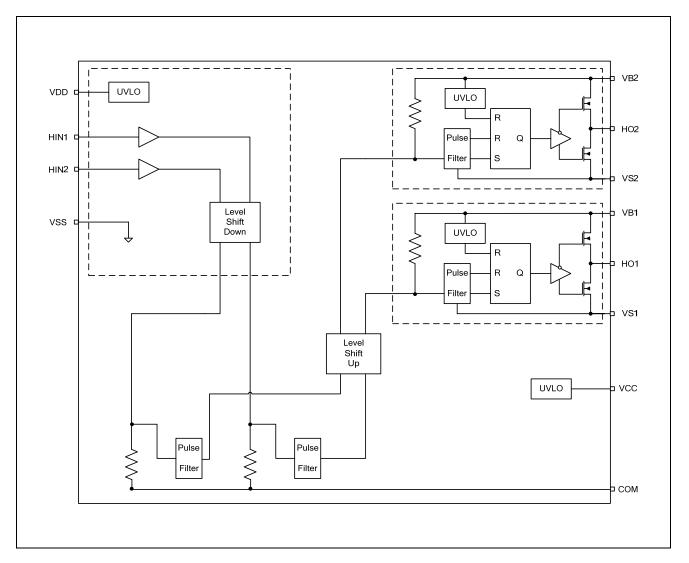
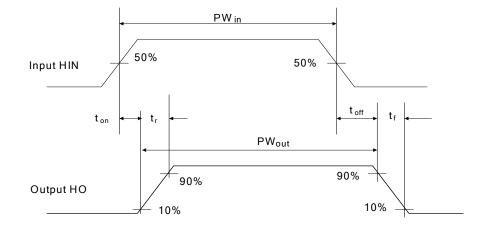
Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V_{DDUV+}	V_{DD} supply undervoltage positive going threshold		4.0		V	Vss -COM = 5V
V _{DDUV} -	V_{DD} supply undervoltage negative going threshold		3.9		V	Vss -COM = 5V
V _{DDUVH}	V _{DD} supply undervoltage lockout hysteresis		0.1		V	Vss -COM = 5V
V _{CCUV+}	V_{CC} supply undervoltage positive going threshold	7.5	8.6	9.7	V	
V _{CCUV-}	V_{CC} supply undervoltage negative going threshold	7.1	8.2	9.3	V	
V _{CCUVH}	V_{CC} supply undervoltage lockout hysteresis		0.4		V	
V_{BSUV+}	V_{BS} supply undervoltage positive going threshold	7.5	8.3	9.4	V	
VBSUV-	V _{BS} supply undervoltage negative going threshold		7.7	8.8	V	
V _{BSUVH}	V _{BS} supply undervoltage lockout hysteresis		0.6		V	
I _{LKDD}	Input Logic offset supply leakage current			50		VDD = VSS = 600V
I _{LKBS}	Highside floating well offset supply leakage current			50	μA	$V_B = V_S = 600V$
I _{QDD}	Quiescent VDD supply current		105	180		$V_{IN} = 0V \text{ or } 5V$
I _{QBS}	Quiescent VBS supply current		100	175		$V_{IN} = 0V \text{ or } 5V$
lacc	Quiescent VCC supply current		180	280	uA	$V_{IN} = 0V \text{ or } 5V$
$V_{IN,th+}$	Logic "1" input threshold	3.5			_	
VIN,th-	Logic "0" input threshold			0.6	V	
Vон	High level output voltage, Vo -VBIAS			1		lo+=20mA
Vol	Low level output voltage, Vo			1	V	lo-=20mA
lin+	Logic "1" input bias current		5			Vin=5V
lin-	Logic "0" input bias current		0		uA	VIN=0V
lo+	Output high short circuit pulsed current		500		mA	VO=15V, VIN=5V, PW<=10us
lo-	Output low short circuit pulsed current		500		mA	Vo=0V,VIN=0VP, W<=10us

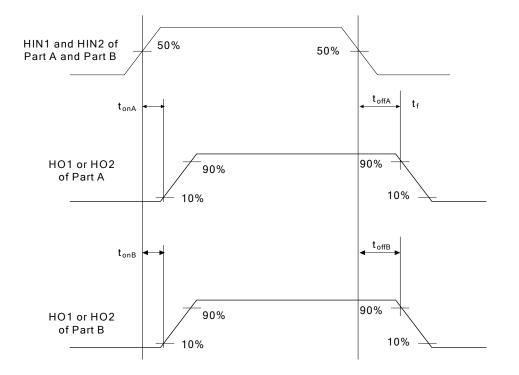
Dynamic Electrical Characteristics

(VDD-VSS)=5V and (VCC-COM)=(VBn-VSn)=15V. TA = 25. °C CL = 1000pF unless otherwise specified. All parameters are reference to COM.

Symbol	Definition		Тур	Max	Unit	Test Conditions
t _{on} , t _{off}	Propagation delay from input pin HIN to output pin HO	55	90	125	ns	Vss=200V, Vs=0V
t _r	Turn-on 10%-to-90% rise time at HO pin		25	70	ns	Vss=200V, Vs=0V
t _f	Turn-off 90%-to-10% fall time at HO pin		25	70	ns	Vss=200V, Vs=0V

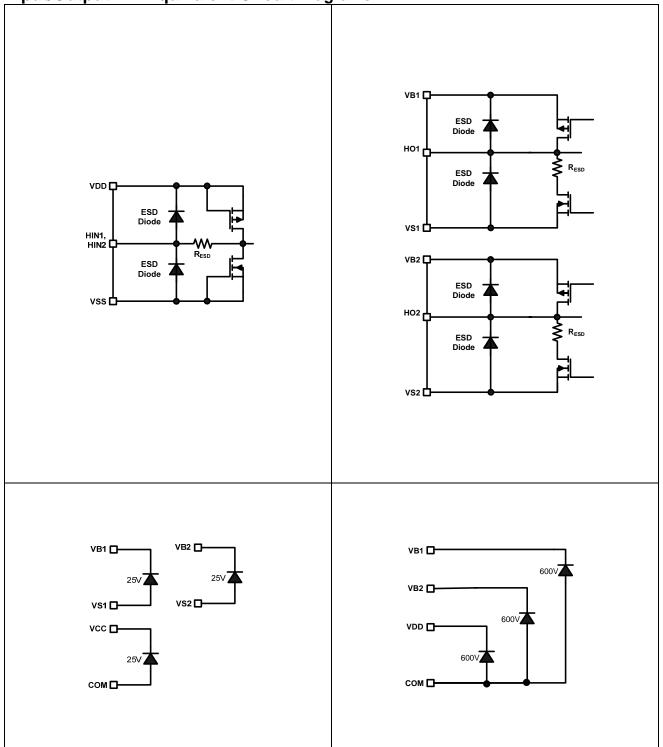
International **tor** Rectifier


Figure 1 Functional Block Diagram

IRS21962S

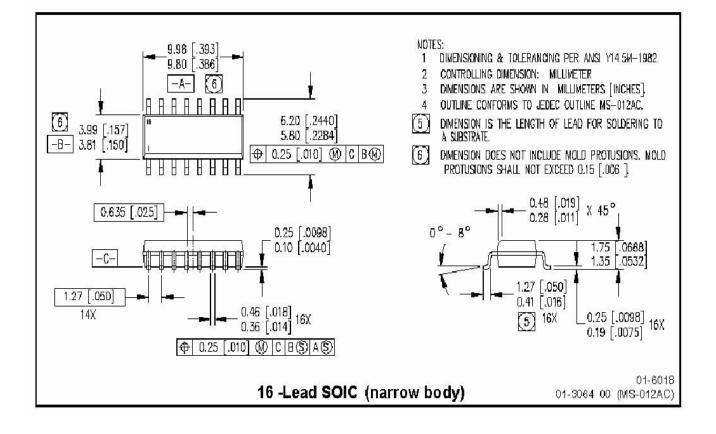
International **tor** Rectifier



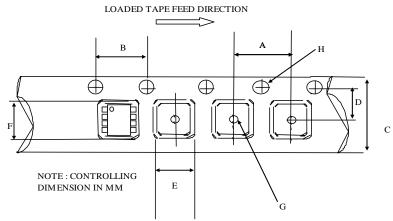
International **IOR** Rectifier

IRS21962S

Lead Definitions:

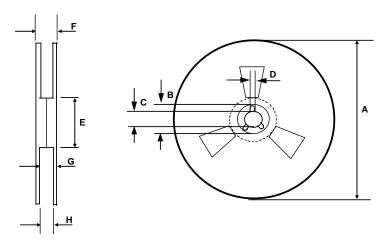

Pin	Symbol	Description		
1	VDD	Input logic supply voltage		
2	HIN1	Logic input channel 1		
3	HIN2	Logic input channel 2		
4	VSS	Input logic offset voltage		
5	NC	No connection		
6	NC	No connection		
7	VCC	Low side supply voltage		
8	COM	Ground		
9	VS1	High side floating well offset voltage		
10	HO1	Floating gate driver output voltage channel 1		
11	VB1	High side floating well positive supply		
12	NC	No connection		
13	NC	No connection		
14	VS2	High side floating well offset voltage		
15	HO2	Floating gate driver output voltage channel 2		
16	VB2	High side floating well positive supply		

Lead Assignments



International

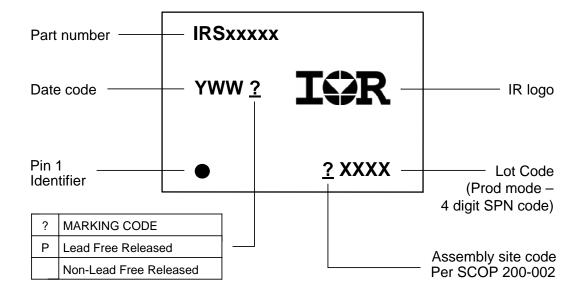
Package Details: SOIC16N



Tape and Reel Details: SOIC16N

CARRIER TAPE DIMENSION FOR 16SOICN

	Me	etric	Imperial		
Code	Min	Max	Min	Max	
A	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	15.70	16.30	0.618	0.641	
D	7.40	7.60	0.291	0.299	
E	6.40	6.60	0.252	0.260	
F	10.20	10.40	0.402	0.409	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	



REEL DIMENSIONS FOR 16SOICN

	Metric		Imperial		
Code	Min	Max	Min	Max	
A	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	22.40	n/a	0.881	
G	18.50	21.10	0.728	0.830	
Н	16.40	18.40	0.645 0.72		

Part Marking Information

Ordering Information

Deer Deet Newshare		Standard Pack		
Base Part Number	Package Type	Form Quantity		Complete Part Number
10004000	SOIC16N	Tube/Bulk	45	IRS21962SPBF
IRS21962	SCICTON	Tape and Reel	2500	IRS21962STRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

> WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105