
Thermally-Enhanced High Power RF LDMOS FET 100 W, 28 V, 2490 – 2690 MHz

Description

The PXAC261002FC is a 100-watt LDMOS FET with an asymmetrical design intended for use in multi-standard cellular power amplifier applications in the 2496 to 2690 MHz frequency band. Features include dual-path design, high gain and thermally-enhanced package with earless flanges. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PXAC261002FC Package H-37248-4

Features

- · Broadband internal input and output matching
- Asymmetric design
 - Main: P1dB = 40 W Typ
 - Peak: P1dB = 70 W Typ
- Typical Pulsed CW performance, 2590 MHz, 26 V, 160 µs, 10% duty cycle, Doherty Configuration
 - Output power at P_{1dB} = 46.5 dBm
 - Output power at P_{3dB} = 50.1 dBm
- Capable of handling 10:1 VSWR @28 V, 100 W (CW) output power
- Integrated ESD protection: Human Body Model, Class 1C (per JESD22-A114)
- · Low thermal resistance
- Pb-free and RoHS compliant

RF Characteristics

Two-carrier WCDMA Specifications (tested in Infineon production Doherty test fixture)

 V_{DD} = 26 V, I_{DQ} = 210 mA, P_{OUT} = 18 W avg, V_{GS2} = 1.4 V, f_1 = 2550 MHz, f_2 = 2590 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 8 dB @ 0.01% CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G_ps	14.1	15.1	_	dB
Drain Efficiency	η_{D}	46	49	_	%
Intermodulation Distortion	IMD	_	-22	-21	dBc

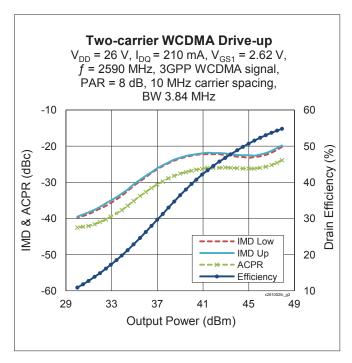
All published data at T_{CASE} = 25°C unless otherwise indicated

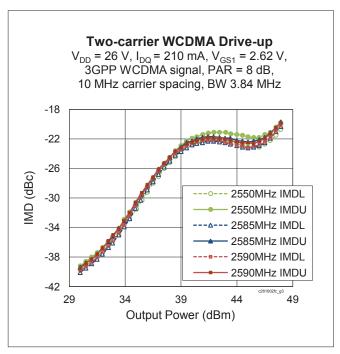
ESD: Electrostatic discharge sens	sitive device—observe handling precautions!	
Data Sheet	1 of 8	Rev. 03.1, 2014-04-04

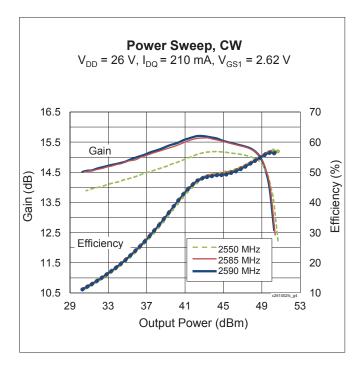
DC Characteristics (each side)

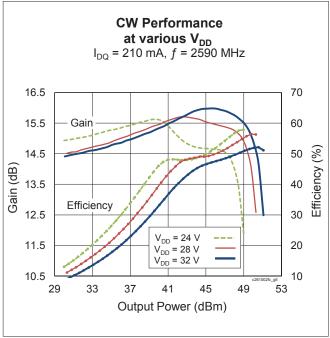
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{DS} = 10 \text{ mA}$	V(BR)DSS	65	_	_	V
Drain Leakage Current	$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1	μΑ
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	10	μΑ
On-State Resistance (main)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.3	_	Ω
(peak)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.16	_	Ω
Operating Gate Voltage (main)	$V_{DS} = 26 \text{ V}, I_{DQ} = 210 \text{ mA}$	V_{GS}	2.1	2.6	3.1	V
(peak)	$V_{DS} = 26 \text{ V}, I_{DQ} = 0 \text{ mA}$	V_{GS}	0.9	1.4	1.9	V
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_		1	μA

Maximum Ratings

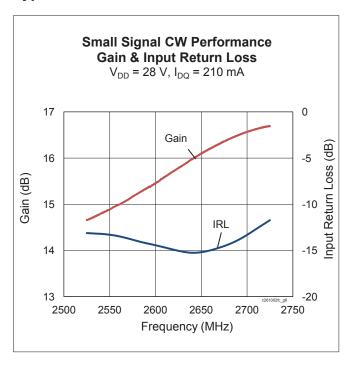

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{\rm DSS}$	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Operating Voltage	V_{DD}	0 to +32	V
Junction Temperature	TJ	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Thermal Resistance (doherty, T _{CASE} = 70°C, 100 W CW)	$R_{ hetaJC}$	0.6	°C/W


Ordering Information


Type and Version	Order Code	Package Description	Shipping
PXAC261002FC V1	PXAC261002FCV1XWSA1	H-37248-4, earless flange	Tray
PXAC261002FC V1 R250	PXAC261002FC V1R250XTMA1	H-37248-4, earless flange	Tape & Reel, 250 pcs



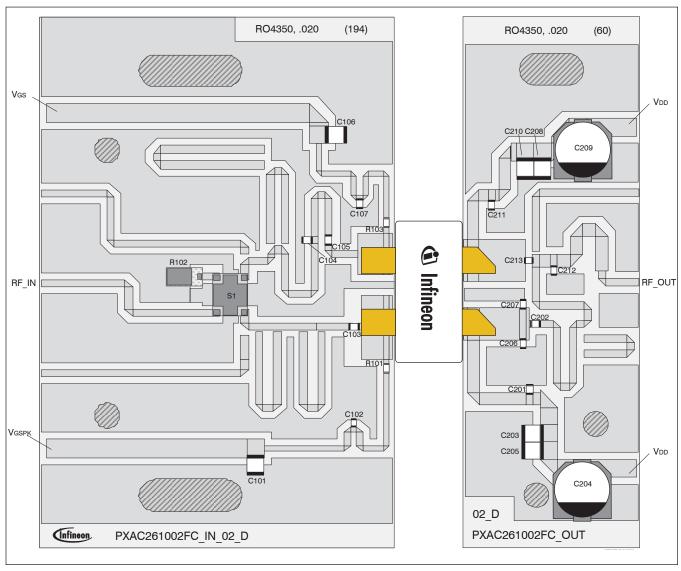
Typical Performance (data taken in a production Doherty test fixture)



Typical Performance (cont.)

Load Pull Performance

Main Side Load Pull Performance – Pulsed CW signal: 160 μ s, 10% duty cycle, V_{DD} = 28 V, I_{DQ} = 240 mA


			P _{1dB}								
			Max Output Power					N	lax PAE		
Freq [MHz]	Zs [Ω]	Ζ Ι [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	PAE [%]	Ζ Ι [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	PAE [%]
2540	13.3 – j23.8	5.7 – j10.9	16.8	46.58	45	50.3	10.9 – j7.1	19.1	45.1	32	59.5
2590	16.5 – j22.0	5.9 – j11.5	16.7	46.44	44	50.3	9.7 – j7.6	18.7	45.3	34	58.5
2640	21 – j24.7	6.4 – j11.5	16.8	46.35	43	50.0	10 – j6.2	19.1	44.9	31	58.0

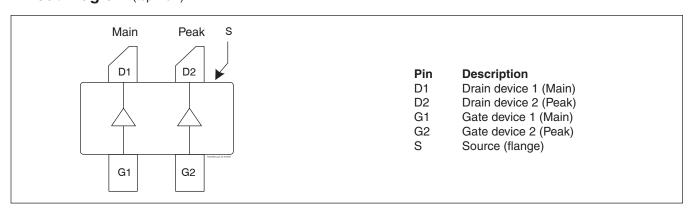
Peak Side Load Pull Performance – Pulsed CW signal: 160 μ s, 10% duty cycle, 28 V, V_{GS1} = 1.4 V

			P _{1dB}								
			Max C	Output Po	wer			N	/lax PAE		
Freq [MHz]	Zs [Ω]	Ζ Ι [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	PAE [%]	Ζ Ι [Ω]	Gain [dB]	P _{OUT} [dBm]	P _{OUT} [W]	PAE [%]
2540	3.8-j12.1	11.8-j7.3	13.0	50	100	53.5	5.2-j5.3	14.4	48.4	69	63.4
2590	5.2-j12.8	13-j5.4	12.8	50	100	53.4	5.7-j5.6	14.2	48.5	71	62.2
2640	5.8-j13.3	14-j3.9	12.8	49.9	98	52.9	6.6-j6	14.2	48.4	69	61.0

Reference Circuit, 2545 - 2595 MHz

Reference circuit assembly diagram (not to scale)

Reference Circuit (cont.)

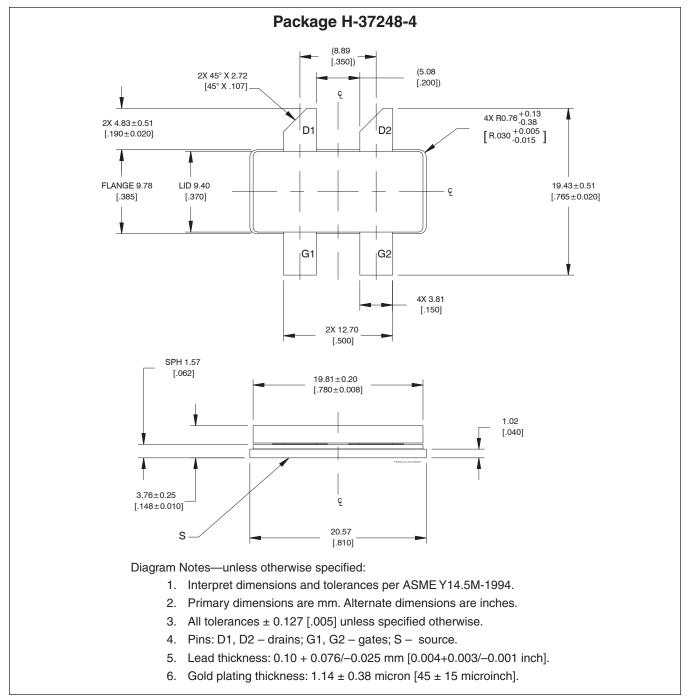

Reference Circuit Assembly

DUT	PXAC261002FC V1			
Test Fixture Part No.	TA/PXAC261002FC V1			
PCB	B Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_r = 3.66$, $f = 2545 - 2595$ MHz			
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower				

Components Information

Component	Description	Suggested Manufacturer	P/N
Input			
C101, C106	Capacitor, 10 μF	Taiyo Yuden	UMK325C7106MM-T
C102	Capacitor, 18 pF	ATC	ATC800A180JT250T
C103	Capacitor, 1.6 pF	ATC	ATC800A1R6CT250T
C104	Capacitor, 0.6 pF	ATC	ATC800A0R6CT250T
C105, C107	Capacitor, 12 pF	ATC	ATC800A120JT250T
R101, R103	Resistor, 10 ohm	Panasonic Electronic Components	ERJ-3GEYJ100V
R102	Resistor, 50 ohm	Anaren	C16A50Z4
S1	Hybrid coupler	Anaren	X3C26P1-03S
Output			
C201, C202	Capacitor, 12 pF	ATC	ATC800A120KT250T
C203, C205, C208, C210	Capacitor, 10 μF	Taiyo Yuden	UMK325C7106MM-T
C204, C209	Capacitor, 220 μF	Panasonic Electronic Components	EEE-FP1V221A
C206	Capacitor, 0.5 pF	ATC	ATC800A0R5CT250T
C207	Capacitor, 0.6 pF	ATC	ATC800A0R6CT250T
C211	Capacitor, 12 pF	ATC	ATC800A120JT250T
C212	Capacitor, 0.4 pF	ATC	ATC800A0R4CT250T
C213	Capacitor, 3.9 pF	ATC	ATC800A3R9CT250T

Pinout Diagram (top view)



Lead connections for PXAC261002FC

Data Sheet 6 of 8 Rev. 03.1, 2014-04-04

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

PXAC261002FC V1

Revision History

Revision	Date	Data Sheet Type	Page	Subjects (major changes since last revision)
01	2013-11-01	Advance	All	Data Sheet reflects advance specification for product development
02	2014-01-28	Production	All All	Data Sheet reflects released product specification Revised all data and includes final specs, typical performance graphs, loadpull, reference circuit
03	2014-03-26	Production	1	Corrected frequency range. Removed "doherty" from second feature. Updated feature 2.
03.1	2014-04-04	Production	1	Removed bullet point 4 (extra error lines) from Features section.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

Edition 2014-04-04
Published by
Infineon Technologies AG
85579 Neubiberg, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Data Sheet 8 of 8 Rev. 03.1, 2014-04-04