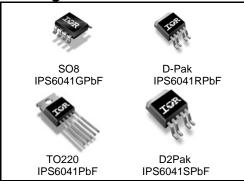


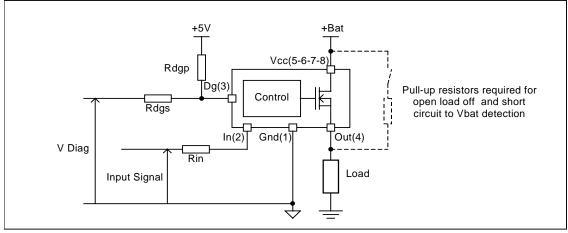
### INTELLIGENT POWER HIGH SIDE SWITCH

#### **Features**

- Over temperature shutdown (with auto-restart)
- Short circuit protection (current limit)
- Reverse battery protection (turns On the MOSFET)
- Full diagnostic capability (short circuit to battery)
- Active clamp
- Open load detection in On and Off state
- Ground loss protection
- Logic ground isolated from power ground
- ESD protection


#### **Description**

The IPS6041(G)(R)(S)PbF is a five terminal Intelligent Power Switch (IPS) for use in a high side configuration. It features short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The output current is limited to the Ilim value. The current limitation is activated until the thermal protection acts. The over-temperature protection turns off the device if the junction temperature exceeds the Tshutdown value. It will automatically restart after the junction has cooled 7°C below the Tshutdown value. The reverse battery protection turns On the MOSFET. A diagnostic pin provides different voltage levels for each fault condition. The double level shifter circuitry will allow large offsets between the logic and load ground.


#### **Product Summary**

Rds(on)130mΩ max.Vclamp39VI Limit7AOpen load3V / 0.22A

**Packages** 



**Typical Connection** 





#### **Absolute Maximum Ratings**

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

| Symbol     | Parameter                                                            | Min.   | Max.    | Units |
|------------|----------------------------------------------------------------------|--------|---------|-------|
| Vout       | Maximum output voltage                                               | Vcc-35 | Vcc+0.3 |       |
| Voffset    | Maximum logic ground to load ground offset                           | Vcc-35 | Vcc+0.3 |       |
| Vin        | Maximum input voltage                                                | -0.3   | 5.5     | V     |
| Vcc max.   | Maximum Vcc voltage                                                  | _      | 36      |       |
| Vcc cont.  | Maximum continuous Vcc voltage                                       | _      | 28      |       |
| lin max.   | Maximum IN current                                                   | -3     | 10      | mA    |
| ldg max.   | Maximum diagnostic output current                                    | -3     | 10      | ША    |
| Vdg        | Maximum diagnostic output voltage                                    | -0.3   | 5.5     | V     |
|            | Maximum power dissipation (internally limited by thermal protection) |        |         |       |
| Pd         | Rth=100°C/W IPS6041G                                                 | _      | 1.25    | W     |
|            | Rth=50°C/W IPS6041R 1"sqrt. footprint                                | _      | 2.5     |       |
|            | Electrostatic discharge voltage (Human body) C=100pF, R=1500Ω        |        |         |       |
|            | Between In and Vcc                                                   |        | 1500    |       |
| ESD        | Other combinations                                                   | _      | 4000    | V     |
| E3D        | Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω,L=10μH  |        |         | V     |
|            | Between In and Vcc                                                   | _      | 100     |       |
|            | Other combinations                                                   | _      | 500     |       |
| Tj max.    | Max. storage & operating temperature junction temperature            | -40    | 150     | °C    |
| Tsoldering | Soldering temperature (10 seconds)                                   | _      | 300     | °C    |

### **Thermal Characteristics**

| Symbol | Parameter                                                                    | Тур. | Max. | Units |
|--------|------------------------------------------------------------------------------|------|------|-------|
| Rth1   | Thermal resistance junction to ambient IPS6041G                              | 100  | _    |       |
| Rth1   | Thermal resistance junction to ambient IPS6041R D-Pak std. footprint         | 70   | _    |       |
| Rth2   | Thermal resistance junction to ambient IPS6041R D-Pak 1" sqrt. footprint     | 50   | _    |       |
| Rth3   | Thermal resistance junction to case IPS6041(R)(S) D-Pak/D2pak/TO220          | 6    | _    | °C/W  |
| Rth1   | Thermal resistance junction to ambient IPS6041(S) D2Pak/TO220 std. footprint | 60   | _    |       |
| Rth2   | Thermal resistance junction to ambient IPS6041S D2Pak 1" sqrt. footprint     | 40   | _    |       |

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

| Symbol | Parameter                                                                 | Min. | Max. | Units |
|--------|---------------------------------------------------------------------------|------|------|-------|
| VIH    | High level input voltage                                                  | 4    | 5.5  |       |
| VIL    | Low level input voltage                                                   | 0    | 0.9  |       |
| lout   | Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V                 |      |      |       |
|        | Rth=100°C/W IPS6041G                                                      | _    | 1.6  | Α     |
|        | Rth=50°C/W IPS6041R 1" sqrt. footprint                                    | _    | 2.3  |       |
| Rin    | Recommended resistor in series with IN pin                                | 4    | 10   |       |
| Rdgs   | Recommended resistor in series with DG pin for reverse battery protection | 4    | 20   | kΩ    |
| Rdgp   | Recommended pull-up resistor for DG                                       | 4    | 20   | K22   |
| Rol    | Recommended pull-up resistor for open load detection                      | 5    | 100  |       |
| F max. | Max. switching frequency                                                  | _    | 3.5  | kHz   |

#### **Static Electrical Characteristics**

Tj=25°C, Vcc=14V (unless otherwise specified)

| Symbol    | Parameter                                  | Min. | Тур. | Max. | Units | Test Conditions        |
|-----------|--------------------------------------------|------|------|------|-------|------------------------|
| Rds(on)   | ON state resistance Tj=25°C                | _    | 110  | 130  |       | Vin=5V, lout=2.5A      |
|           | ON state resistance Tj=150°C               | _    | 190  | 230  | mΩ    | Vin=5V, lout=2.5A      |
|           | ON state resistance Tj=25°C, Vcc=6V        | _    | 125  | 155  | 11122 | Vin=5V, lout=1.5A      |
|           | ON state resistance during reverse battery | _    | 140  | 180  |       | Vcc-Gnd=14V            |
| Vcc op.   | Operating voltage range                    | 6    | _    | 28   |       |                        |
| V clamp 1 | Vcc to Out clamp voltage 1                 | 37   | 39   | _    | V     | lout=20mA              |
| V clamp 2 | Vcc to Out clamp voltage 2                 | _    | 40   | 42   |       | lout=2.5A (see Fig. 1) |
| Icc Off   | Supply current when Off                    | _    | 4    | 9    | μΑ    | Vin=0V, Vout=0V        |
| Icc On    | Supply current when On                     | _    | 2.2  | 5    | mA    | Vin=5V                 |
| Vih       | Input high threshold voltage               | _    | 2.5  | 2.9  |       |                        |
| Vil       | Input low threshold voltage                | 1.5  | 2    | _    | V     |                        |
| In hyst.  | Input hysteresis                           | 0.2  | 0.5  | 1    |       |                        |
| lin On    | Input current when device is On            | _    | 45   | 100  |       | Vin=5V                 |
| ldg       | Dg leakage current                         | _    | 0.1  | 10   | μA    | Vdg=5V                 |
| Vdg       | Low level DG voltage                       | _    | 0.25 | 0.4  | V     | ldg=1.6mA              |

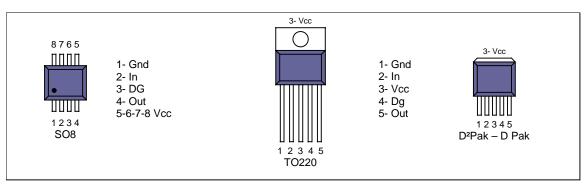
# **Switching Electrical Characteristics** Vcc=14V, Resistive load=6Ω, Vin=5V, Tj=25°C

| Symbol      | Parameter                   | Min. | Тур. | Max. | Units | Test Conditions |
|-------------|-----------------------------|------|------|------|-------|-----------------|
| Tdon        | Turn-on delay time          | _    | 5    | 15   |       |                 |
| Tr1         | Rise time to Vout=Vcc-5V    | _    | 3    | 10   | μs    |                 |
| Tr2         | Rise time to Vout=0.9 x Vcc | _    | 4    | 20   |       |                 |
| dV/dt (On)  | Turn On dV/dt               | _    | 2.5  | 5    | V/µs  |                 |
| EOn         | Turn On energy              | _    | 100  | _    | μJ    | see Fig. 3      |
| Tdoff       | Turn-off delay time         | _    | 10   | 20   | 0     |                 |
| Tf          | Fall time to Vout=0.1 x Vcc | _    | 3    | 10   | μs    |                 |
| dV/dt (Off) | Turn Off dV/dt              | _    | 6.5  | 20   | V/µs  |                 |
| EOff        | Turn Off energy             |      | 50   | _    | μJ    |                 |



#### **Protection Characteristics**

| Symbol   | Parameter                          | Min.   | Тур. | Max. | Units | Test Conditions |            |
|----------|------------------------------------|--------|------|------|-------|-----------------|------------|
| Ilim     | Internal current limit             | 4      | 7    | 10   | Α     | Vout=0V         |            |
| Tsd+     | Over temperature high threshold    | 150(1) | 165  | _    | °C    | See fig. 2      |            |
| Tsd-     | Over temperature low threshold     | _      | 158  | _    | C     | C               | See lig. 2 |
| Vsc      | Short-circuit detection voltage(2) | 2      | 3    | 4    |       |                 |            |
| UV       |                                    | _      | 5    | 5.9  |       |                 |            |
| UV hyst. |                                    | 0.25   | _    | 1.6  | V     |                 |            |
| VOL Off  | Open load detection threshold      | 2      | 3    | 4    |       |                 |            |
|          |                                    |        |      |      |       |                 |            |
| I OL On  | Open load detection threshold      | 0.05   | 0.15 | 0.22 | Α     |                 |            |
|          |                                    |        |      |      |       |                 |            |


<sup>(1)</sup> Guaranteed by design

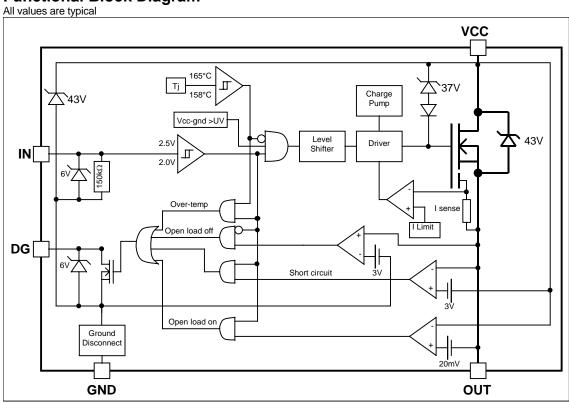
#### **True Table**

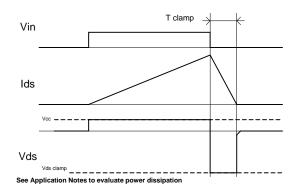
| Operating Conditions     | IN | OUT | DG    |
|--------------------------|----|-----|-------|
| Normal                   | Н  | Н   | Н     |
| Normal                   | L  | L   | Н     |
| Open Load                | Н  | Н   | L     |
| Open Load (3)            | L  | Н   | L     |
| Short circuit to Gnd     | Н  | L   | L     |
| Short circuit to Gnd     | L  | L   | Н     |
| Short circuit to Vcc     | Н  | Н   | L (4) |
| Short circuit to Vcc (5) | L  | Н   | L     |
| Over-temperature         | Н  | Ĺ   | Ĺ     |
| Over-temperature         | L  | L   | Н     |

<sup>(3)</sup> With a pull-up resistor connected between the output and Vcc.

## **Lead Assignments**




<sup>(2)</sup> Reference to Vcc

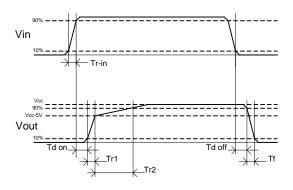

<sup>(4)</sup> Vds lower than 10mV.

<sup>(5)</sup> Without a pull-up resistor connected between the output and Vcc.



## **Functional Block Diagram**






Vin lout limiting Thermal cycling

Ti Tsd+
TsdDG

Figure 1 - Active clamp waveforms

Figure 2 - Protection timing diagram



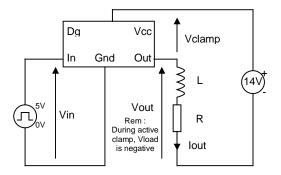



Figure 3 - Switching times definitions

Figure 4 - Active clamp test circuit

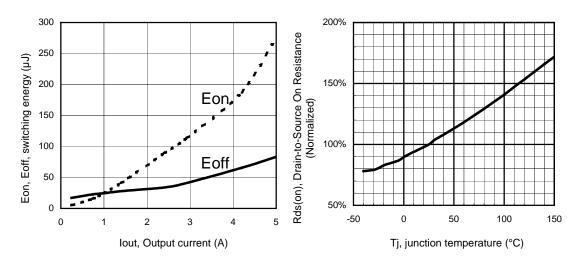



Figure 5 – Switching energy (µJ) Vs Output current (A)

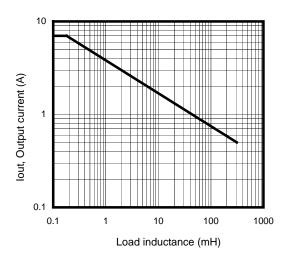
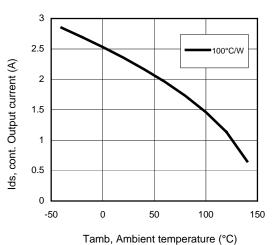
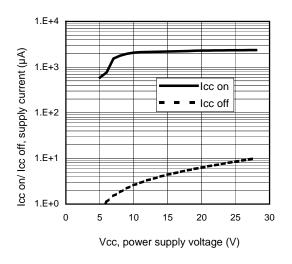



Figure 7 – Max. Output current (A) Vs Load inductance (mH)

Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)





Figure 8 – Max. ouput current (A) Vs Ambient temperature (°C)

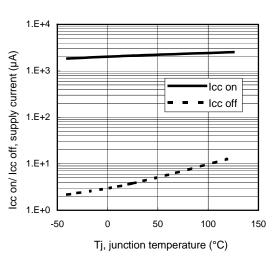


8 6 (4) 4 2 2 0 50 100 Tj, junction temperature (°C)

Figure 9 – Transient thermal impedance (°C/W) Vs time (s)

Figure 10 –I limit (A)
Vs junction temperature (°C)





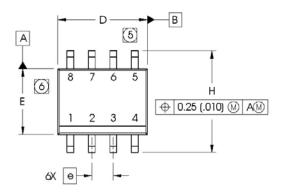
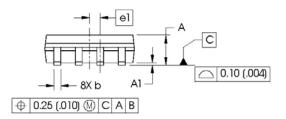
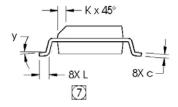


Figure 11 - Icc on/ Icc off (µA) Vs Vcc (V)

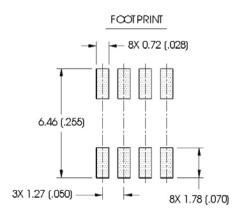
Figure 12 - Icc on/ Icc off (µA) Vs Tj (°C)



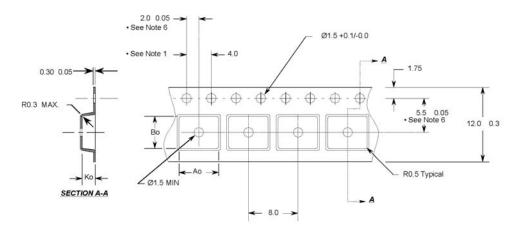


### Case Outline - SO8 - Automotive Q100 PbF MSL2 qualified

Dimensions are shown in millimeters (inches)




| DIM   | INC    | HES   | MILLIM      | ETERS |  |
|-------|--------|-------|-------------|-------|--|
| DIIVI | MIN    | MAX   | MIN         | MAX   |  |
| Α     | .0532  | .0688 | 1.35        | 1.75  |  |
| A1    | .0040  | .0098 | 0.10        | 0.25  |  |
| b     | .013   | .020  | 0.33        | 0.51  |  |
| С     | .0075  | .0098 | 0.19        | 0.25  |  |
| D     | .189   | .1968 | 4.80        | 5.00  |  |
| Е     | .1497  | .1574 | 3.80        | 4.00  |  |
| е     | .050 B | ASIC  | 1.27 BASIC  |       |  |
| e1    | .025 B | ASIC  | 0.635 BASIC |       |  |
| Н     | .2284  | .2440 | 5.80        | 6.20  |  |
| K     | .0099  | .0196 | 0.25        | 0.50  |  |
| L     | .016   | .050  | 0.40        | 1.27  |  |
| У     | 0°     | 8°    | 0°          | 8°    |  |






#### NOTES:

- 1. DIMENSIONING & TOLERANGING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERINGTO A SUBSTRATE.



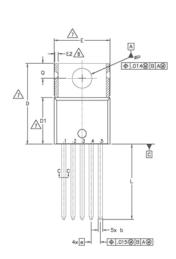
### Tape & Reel SO8

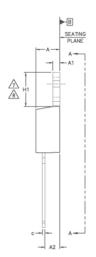


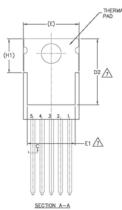
#### Notes:

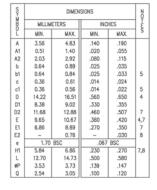
- 1. 10 sprocket hole pitch cumulative tolerance 0.2
- 2. Camber not to exceed 1mm in 100mm
- Material: Black Conductive Advantek Polystyrene
   Ao and Bo measured on a plane 0.3mm above the
- 4. Ao and Bo measured on a plane 0.3mm above the bottom of the pocket
- Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

Ao = 6.4 mm


Bo = 5.2 mm


Ko = 2.1 mm


- All Dimensions in Millimeters -




### Case Outline - TO220 (5 lead) - Automotive Q100 PbF qualified









| PLATING - | BASE METAL   |
|-----------|--------------|
| (c)       | e1 <u>\$</u> |
|           | b1           |

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994

- 1.- DIMENSIONNE AND TOLEPANCHIG AS PER ASME "14.5 M 1994.

  DIMENSIONS ARE SHOWN IN INCHES [MILLIBETERS].

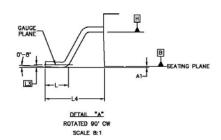
  3.- LEAD DIMENSION AND FINSH UNCONTROLLED IN U.1.

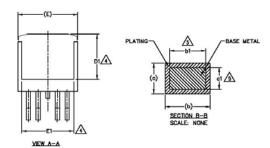
  DIMENSION OF, 01 M € E DO NOT INCLIDE MOLD FLASH WILD FLASH

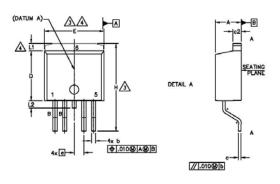
  SHALL NOT EXCEED .005" (0.127) PER SDC. THESE DIMENSIONS ARE

  MESSURED AT THE UTIENTIST EXTREMES OF THE PLASTIC BODY.

  DIMENSION IN & c.1 APPLY TO BASE METAL ONLY.


  CONTROLLING DIMENSION TO INCHES.


  7.- THERMAL PAD CONTOUR OFTIONAL WITHIN DIMENSIONS E,HI,D2 & E1


- DIMENSION 2 X H1 DEFINE A ZONE MHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED. OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DEFINED FROM THE ACTUAL PACKAGE OUTLINE.
- 10.- LEADS AND DRAIN ARE PLATED WITH 100% Sn



### Case Outline 5 Lead - D2PAK - Automotive Q100 PbF MSL1 qualified

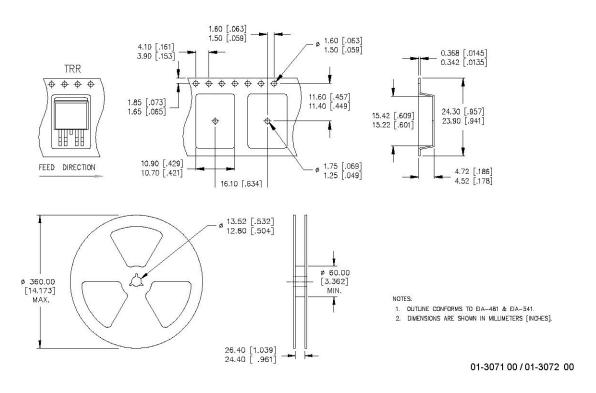






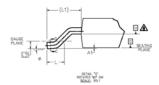
#### NOTES:

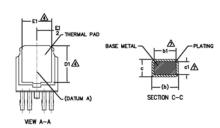
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 (.005") PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

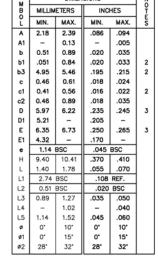

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

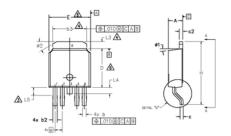
SOMENSION 61 AND 61 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263BA.
- 9 LEADS AND DRAIN ARE PLATED : 100% Sh


| S<br>Y      |       | DIMEN       | SIONS |            | N     |  |
|-------------|-------|-------------|-------|------------|-------|--|
| M<br>B<br>O | МІШМ  | MILLIMETERS |       | ERS INCHES |       |  |
| 5           | MIN.  | MAX.        | MIN.  | MAX.       | O T E |  |
| Α           | 4.06  | 4.83        | .160  | .190       |       |  |
| A1          | _     | 0.254       | -     | .010       |       |  |
| ь           | 0.51  | 0.99        | .020  | .039       | 4     |  |
| ь1          | 0.51  | 0.89        | .020  | .035       |       |  |
| С           | 0.38  | 0.74        | .015  | .029       |       |  |
| e1          | 0.38  | 0.58        | .015  | .023       | 4     |  |
| c2          | 1.14  | 1.65        | .045  | .065       |       |  |
| D           | 8.38  | 9.65        | .330  | .380       | 3     |  |
| D1          | 6.86  | -           | .270  | -          |       |  |
| E           | 9.65  | 10.67       | .380  | .420       | 3     |  |
| E1          | 6.22  | -           | .245  | -          |       |  |
| e           | 1.70  | BSC         | .067  | BSC        |       |  |
| н           | 14.61 | 15.88       | .575  | .625       |       |  |
| L           | 1.78  | 2.79        | .070  | .110       |       |  |
| L1          | 100   | 1.68        | -     | .066       |       |  |
| L2          | -     | 1.78        | -     | .070       |       |  |
| L3          | 0.25  | BSC         | .010  | BSC        |       |  |
| L4          | 4.78  | 5.28        | .188  | .208       |       |  |


### Tape & Reel 5 Lead - D2PAK

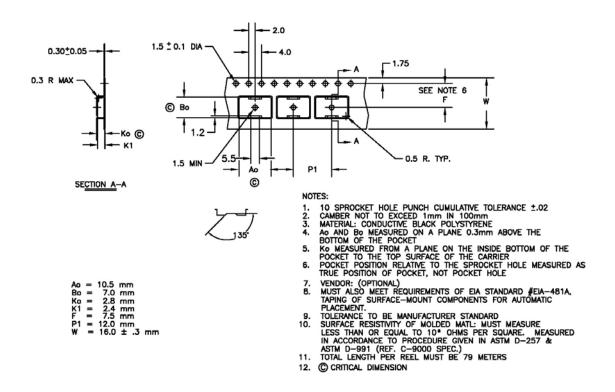



#### Case Outline 5 Lead - DPAK - Automotive Q100 PbF MSL1 qualified










#### NOTES:

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- 8.- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252.
- 10. LEADS AND DRAIN ARE PLATED WITH 100% Sn

#### Tape & Reel 5 Lead - DPAK



International
Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice.

TO220, D2Pak and Dpak is MSL1 qualified

This product has been designed and qualified for the Automotive [Q100] market. 11/25/2006