

SINGLE/DUAL CHANNEL INTELLIGENT POWER LOW SIDE SWITCH

Features

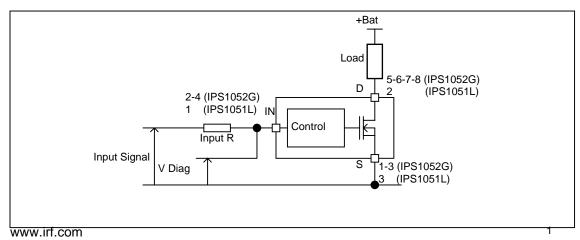
- Over temperature shutdown
- Over current shutdown
- Active clamp
- Low current & logic level input
- ESD protection
- Optimized Turn On/Off for EMI
- · Diagnostic on the input current

Description

The IPS1051LPbF and IPS1052GPbF are Intelligent Power Switches (IPS) featuring low side MOSFETs with over-current, over-temperature, ESD protection and drain to source active clamp. The IPS1052G is a dual channel device while the IPS1051 is a single channel. These devices offer protections and the high reliability required in harsh environments. Each switch provides efficient protection by turning OFF the power MOSFET when the temperature exceeds 165°C or when the drain current reaches 3A. The device restarts once the input is cycled. A serial resistance connected to the input provides the diagnostic. The avalanche capability is significantly enhanced by the active clamp and covers most inductive load demagnetizations.

Product Summary

 $\begin{array}{ll} \text{Rds(on)} & 250\text{m}\Omega \text{ (max.)} \\ \text{Vclamp} & 39\text{V} \\ \text{Ishutdown} & 2.8\text{A (typ.)} \end{array}$


Packages

SOT-223 IPS1051LPbF SO-8 IPS1052GPbF

Typical Connection

International IOR Rectifier

IPS1051LPbF / IPS1052GPbF

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vds	Maximum drain to source voltage	-0.3	36	V
Vds cont.	Maximum continuous drain to source voltage	-	28	V
Vin	Maximum input voltage	-0.3	6	V
Isd cont.	Max diode continuous current (limited by thermal dissipation)	_	1.3	Α
Pd	Maximum power dissipation (internally limited by thermal protection) Rth=60°C/W IPS1051L 1" sqrt. footprint		2	W
	Rth=100°C/W IPS1052G std. footprint		1.25	
	Electrostatic discharge voltage (Human body) C=100pF, R=1500Ω			
	Between drain and source	_	4	
ESD	Other combinations		3	kV
ESD	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω			N.V
	Between drain and source	_	0.5	
	Other combinations		0.3	
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C

Thermal Characteristics

	1 = .	_		
Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS1051L SOT-223 std. footprint	100	_	
Rth2	Thermal resistance junction to ambient IPS1051L SOT-223 1" sqrt. footprint	60	_	
Rth1	Thermal resistance junction to ambient IPS1052G SO-8 std. Footprint	100		°C/W
Kuii	1 die active	100		C/VV
Rth1	Thermal resistance junction to ambient IPS1052G SO-8 std. footprint	130		
Kun	2 die active	130		

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4.5	5.5	V
VIL	Low level input voltage	0	0.5	V
lds	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=60°C/W IPS1051L 1" sqrt. Footprint	_	1.4	Α
	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=100°C/W IPS1052G 1" sqrt. Footprint - 1 die active	_	1.1	Α
	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=130°C/W IPS1052G 1" sqrt. Footprint - 2 die active			Α
Rin	Recommended resistor in series with IN pin to generate a diagnostic	0.5	10	kΩ
Max L	Max. recommended load inductance (including line inductance)(1)	_	30	μH
Max. F	Max. frequency	_	10	kHz
Max. t rise	Max. input rise time		1	μs

⁽¹⁾ Higher inductance is possible if maximum load current is limited - see figure 11

Static Electrical Characteristics

Tj=25°C, Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	_	160	250	~ 0	Vin=5V. Ids=1A
	ON state resistance Tj=150°C	_	340	450	mΩ	VIII=5V, IdS=1A
ldss1	Drain to source leakage current	_	0.1	5	μA	Vcc=14V, Tj=25°C
ldss2	Drain to source leakage current	_	0.2	10	μΑ	Vcc=28V, Tj=25°C
V clamp1	Drain to source clamp voltage 1	36	38	_		Id=20mA
V clamp2	Drain to source clamp voltage 2	_	39	42	\/	Id=0.5A
Vin clamp	IN to source pin clamp voltage	5.5	6.5	7.5	V	lin=1mA
Vth	Input threshold voltage	_	1.7	_		Id=10mA

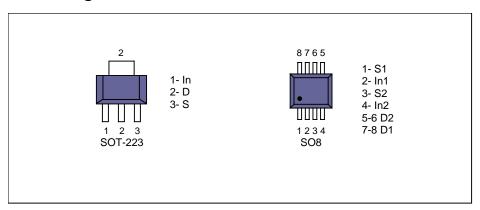
Switching Electrical Characteristics Vcc=14V, Resistive load=10Ω, Rinput=50Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to 20%	1	3	10		
Tr	Rise time 20% to 80%	1	3	10		See figure 2
Tdoff	Turn-off delay time to 80%	3	15	40	μs	See ligure 2
Tf	Fall time 80% to 20%	2	4	10		
Eon + Eoff	Turn on and off energy	_	0.1	_	mJ	

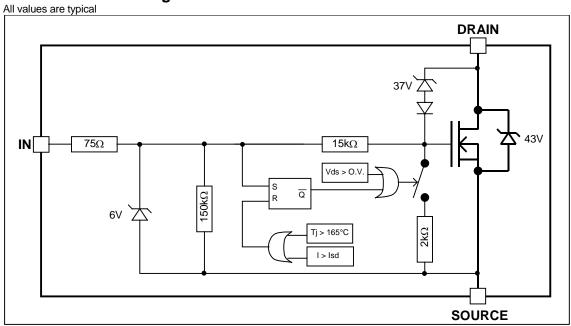
Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tsd	Over temperature threshold	150(2)	165	_	°C	See figure 1
Isd	Over current threshold	1.9	2.8	3.8	Α	See figure 1
OV	Over voltage protection (not active when the device is ON)	34	37	_	V	
Vreset	IN protection reset threshold	_	1.7	_	V	
Treset	Time to reset protection	15(2)	50	200	μs	Vin=0V, Tj=25°C

⁽²⁾Guaranteed by design


Diagnostic

Diagnoono								
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions		
lin, on	ON state IN positive current	15	32	70		Vin=5V		
lin, off	OFF state IN positive current	150	230	350	μΑ			
	(after protection latched – fault condition)							


International Rectifier

IPS1051LPbF / IPS1052GPbF

Lead Assignments

Functional Block Diagram

International

IPS1051LPbF / IPS1052GPbF

All curves are typical values. Operating in the shaded area is not recommended.

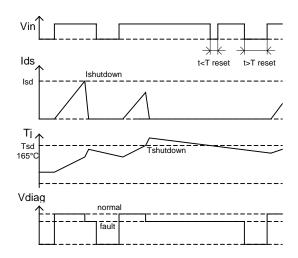


Figure 1 - Timing diagram

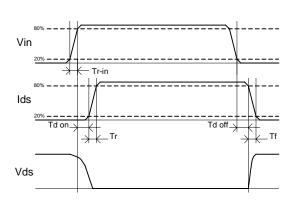


Figure 2 - IN rise time & switching definitions

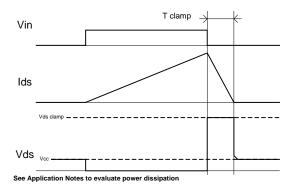


Figure 3 - Active clamp waveforms

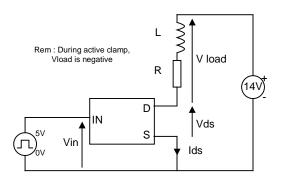


Figure 4 - Active clamp test circuit

4

IPS1051LPbF / IPS1052GPbF

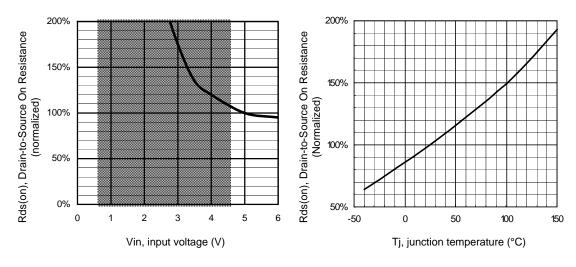


Figure 5 – Normalized Rds(on) (%) Vs Input voltage (V)

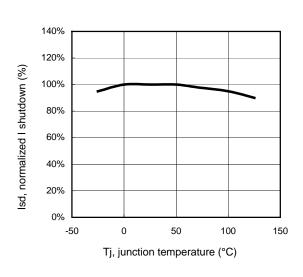
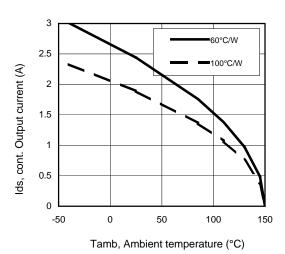
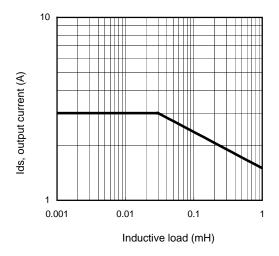



Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

Figure 7 – Current limitation and current shutdown Vs Input voltage (V)

Vin, input voltage (V)


Figure 8 – Normalized I shutdown (%) Vs junction temperature (°C)

2.5 (V) 1.5 1.5 0.5 0 1 100 1000 Protection response time (s)

Figure 9 – Max. continuous output current (A) Vs Ambient temperature (°C)

Figure 10 – Ids (A) Vs over temperature protection response time (s) / IPS1051L

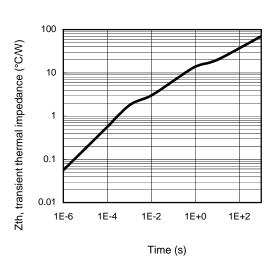
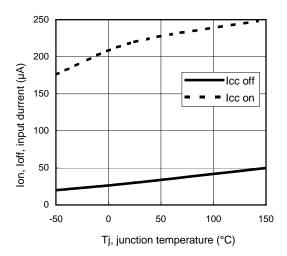
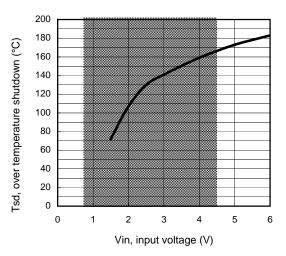
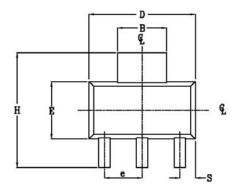



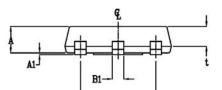
Figure 11 – Max. ouput current (A) Vs Inductive load (mH)

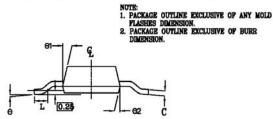
Figure 12 – Transient thermal impedance (°C/W) Vs time (s)

International TOR Rectifier

IPS1051LPbF / IPS1052GPbF

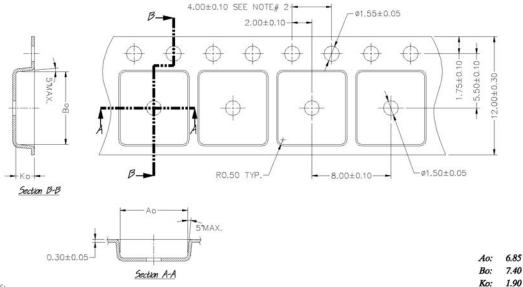

Figure 13 – Input current (μA) On and Off Vs junction temperature (°C)


Figure 14 – Over temperature shutdown (°C) Vs input voltage (V)

Case Outline - SOT-223 - Automotive Q100 PbF MSL2 qualified

POS	MILLIME	TERS	INC	HES
1	MAX	MIN	MAX	MIN
A	1.70	1.50	.067	.060
A1	0.10	0.02	.004	.0008
В	3.15	2.95	.124	.116
B1	0.85	0.65	.033	.026
C	0.35	0.25	.014	.010
D	6.70	6.30	.264	.248
e	2.30	NOM	.0905 NOM	
e1	4.60	NOM	.181	NOM
E	3.70	3.30	.146	.130
H	7.30	6.70	.287	.264
S	1.05	0.85	.041	.033
t	1.30	1.10	.051	.043
Θ	10° k	(AX	10° MAX	
Θ1	16°	10°	16*	10°
Θ2	16*	10°	16*	10*
L	0.75	MIN	0.02	95 MIN

Leads and drain are plated with 100% Sn

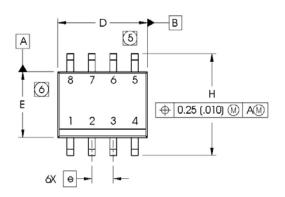

Pitch:

Width:

8.00

12.00

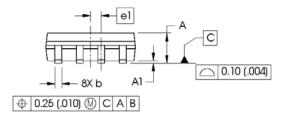
Tape & Reel - SOT-223

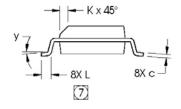


NOTES:

Ao & Bo are measured at 0.3mm above base of pocket.
 10 picthes cumulative tol. ±0.2mm.

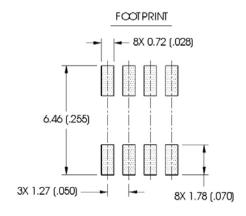
Case Outline - SO-8 - Automotive Q100 PbF MSL2 qualified

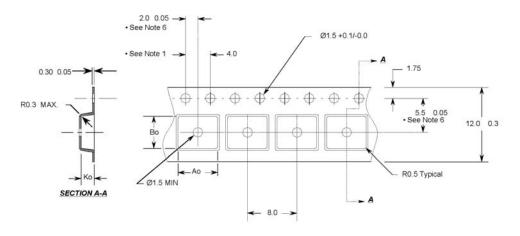

Dimensions are shown in millimeters (inches)



DIM	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 B	ASIC	
e1	.025 B	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

INCHES


MILLIMETERS


NOTES:

- 1. DIMENSIONING & TOLERANGING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

Leads and drain are plated with 100% Sn

Tape & Reel - SO-8

Ao = 6.4 mm

Bo = 5.2 mm

Ko = 2.1 mm

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance 0.2
- 2. Camber not to exceed 1mm in 100mm
- Material: Black Conductive Advantek Polystyrene
 Ao and Bo measured on a plane 0.3mm above the
- Ao and Bo measured on a plane 0.3mm above the bottom of the pocket
- 5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

- All Dimensions in Millimeters -

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice.

SOT223 and SO8 are MSL2 qualified.

This product is designed and qualified for the Automotive [Q100] market. 12/06/2006