
									ONS										
LTR				[DESCR	RIPTIC	N					DA	ΓE (YF	R-MO-	DA)		APP	ROVE	D
REV							1	1	1									1	+
SHEET																			
SHEET REV																			
SHEET REV SHEET																			
SHEET REV SHEET REV STATUS	3		RE				2			5	6	7	8	9	10	11			
SHEET REV SHEET REV STATUS OF SHEETS	6		SH PR	IEET	ED BY	1	2	3	4	5	6 EFEN	 7 SE SI	8 JPPL	1			UMP	3US	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO	NDAR	UIT	SH PR G	IEET EPAR	cil D BY		2	3	4		EFEN	SE SI	JPPL BUS,	Y CE		COL 218-39		3US	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO DRA THIS DF AVAI FOR US	NDAR DCIRC AWING RAWIN ILABLE SE BY	G IS E ALL	SH PR G CH G	EPAR reg Ce ECKE reg Ce	cil D BY	· · ·	2	3	MIC	DE	EFEN	SE SU DLUM http	JPPL BUS, ://ww	Y CE OHIC w.ds	NTER D 432 cc.dla	218-39 a.mil	990	BUS	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A MICRO DRA THIS DF AVAI FOR US DEPAR AND AGEN	NDAR OCIRC AWING RAWIN ILABLE SE BY RTMEN ICIES (ig is E All NTS Of TH	SH PR Gi CH Gi AF	EET EPAR reg Ce ECKE reg Ce PROV narles	cil D BY cil /ED B ^V F. Saft	ſ			MIC	DE		SE SU DLUM http	JPPL BUS, ://ww	Y CE OHIC w.ds	NTER D 432 cc.dla	218-39 a.mil	990		
MICRO DRA THIS DF AVAI FOR US DEPAR AND AGEN DEPARTMEN	NDAR OCIRC AWING RAWIN ILABLE SE BY RTMEN ICIES (G IS E ALL ITS OF TH DEFEI	SH PR G CH G AF CI	EET EPAR reg Ce ECKE reg Ce PROV harles	cil D BY cil /ED B ^V F. Saft	r fle ROVA 03-23			MIC CH	DE CRO(ANN	CIRC EL, I	SE SU DLUM http	JPPL BUS, ://ww HYE CCC	Y CE OHIC w.ds	NTER D 432 cc.dla 0, 15 /ERT	218-39 a.mil	990 .T, D	DUAL	

-

1.3 <u>Absolute maximum ratings</u> . <u>1</u> /	
Input voltage range	-0.5 V dc to +80 V dc
Lead temperature (soldering, 10 seconds)	+300°C
Storage temperature	-55°C to +135°C
1.4 <u>Recommended operating conditions</u> .	
Input voltage range	+18 V dc to +50 V dc
Output power <u>2/ 3</u> /	≤ 40 W
Case operating temperature range (T _C) <u>4</u> /	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-1835	-	Interface Standard for Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>https://assist.daps.dla.mil/quicksearch/</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. Therefore, the tests and inspections herein may not be performed for the applicable device class (see MIL-PRF-38534). The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

<u>1</u> /	Stresses above the absolute maximum ratings may cause permanent damage to the device.	Extended operation at the
	maximum levels may degrade performance and affect reliability.	

2/ Derate output power linearly above case temperature +125°C to 0 at +135°C.

3/ Limit represent 80 percent of total rated output current. To achieve rated output power, the remaining 20 percent of the total rated output current must be provided by the other output.

4/ For operation at temperatures between +85°C and +125°C, derate the maximum input voltage linearly from 60 V dc to 40 V dc and the maximum output power linearly from 100 percent to 75 percent.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 3

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request.

3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 4

	Т	ABLE I. <u>Electrical pe</u>	rformance	characteri	stics.			
Test	Symbol	Conditions	1/	Group A	Device	Limits		Unit
		$\begin{array}{c} -55^\circ C \leq T_C \leq +1 \\ V_{\text{IN}} = 28 \; V \; dc \; \pm 5\% \\ \text{unless otherwise s} \end{array}$	85°C , C _L = 0	subgrou	ps type	Min	Max	
Output voltage <u>2</u> /	V _{OUT}	I _{OUT} = 1.333 A		1	01	+14.94	+15.06	V
				2,3		+14.80	+15.20	
Output current 3/	I _{OUT}	V _{IN} = 18, 28, 50 V d Either output	С	1,2,3	01		2.14	А
Output ripple voltage <u>2</u> / <u>4</u> /	V _{RIP}	V _{IN} = 1.333 A Both outputs.		1,2,3	01		60	mV p-p
Line regulation <u>2</u> /	VR _{LINE}	V _{IN} = 18, 28, 40 V d I _{OUT} = 0, 50%, 100% load both outputs.	c, ⁄⁄6 rated	1,2,3	01	-10	+10	mV
Load regulation 2/	VR _{LOAD}	V_{IN} = 18, 28, and 50 I_{OUT} = 0, 50%, and rated load both outp	100%	1,2,3	01	-0.5	+0.5	%
Cross regulation <u>5</u> /	VR _{CROSS}	V_{IN} = 18, 28, and 50 I_{OUT} = 0, 50%, 100% load both outputs.) V dc, % rated	1,2,3	01	-3.0	+3.0	%
Input current	I _{IN}	I _{OUT} = 0, pin 3 oper Pin 3 shorted to	า	1,2,3	01		100	mA
		Pin 3 shorted to Input return Pin 2		1,2,3	01		5.0	mA
Efficiency <u>2</u> /	E _{FF}	I _{OUT} = 1.333 A		1,2,3	01	77		%
Isolation	ISO	Input to output or an case (except pin 6) 500 V dc		1	01	100		ΜΩ
Maximum capacitive load <u>2/ 6/ 7</u> /	CL	I _{OUT} = 1.333 A No effect on dc performance, Each outputs of dua	als	1	01		60	μF
Power dissipation load	PD	Short circuit		1,2,3	01		20	w
fault <u>8</u> /		Overload		1,2,3	01		20	
Current limit point <u>8</u> /	I _{CL}	V _{OUT} = 90% of Nom	inal	1,2	01	105	135	%
				3	01	105	150	
Switching frequency	Fs	Sync input (pin 4) o I _{OUT} = 1.333 A	pen	1,2,3	01	450	550	kHz
Sync frequency range, <u>6</u> /	F _{SYNC}	External clock on S pin 4. I _{OUT} = 1.333		1,2,3	01	450	600	kHz
Output response to step load changes <u>2</u> / <u>7</u> /	VT _{LOAD}	50% to/from 100% load		4,5,6	01	-300	+300	mV pk
See footnotes at end of tabl	e.							
STANDARD MICROCIRCUIT DRAWING				Έ Δ				10216
DEFENSE SUPPL COLUMBUS,			I	REVISION LE	VEL	SHEET	5	

TABLE I. Electrical performance characteristics - Continued.							
Test	Symbol	Conditions $\underline{1}/$ -55°C \leq T _C \leq +85°C	Group A subgroups	Device type	Lin	nits	Unit
		$V_{IN} = 28 V dc \pm 5\%$, $C_L = 0$ unless otherwise specified	Subgroupe	type	Min	Max	
Recovery time, step load changes <u>2</u> / <u>9</u> / <u>10</u> /	TT _{LOAD}	50% to/from 100% load	4,5,6	01		200	μs
Output response to step line changes <u>2</u> / <u>6</u> / <u>11</u> /	VT _{LINE}	Input step, 18 V to/from 50 V I _{OUT} = 1.333 A	4,5,6	01	-300	+300	mV pk
Recovery time step transient line changes <u>2</u> / <u>6</u> / <u>10</u> / <u>11</u> /	TT _{LINE}	Input step, 18 V to/from 40 V I _{OUT} = 1.333 A	4,5,6	01		200	μs
Turn on overshoot <u>2</u> / <u>12</u> /	VTon _{OS}	0% load, 100% load Enable on.	4,5,6	01		10	%
Turn on delay <u>12</u> /	Ton _D	0% load, 100% load. Enable on.	4,5,6	01	1.0	5.0	ms

For operation at temperatures between +85°C and +125°C derate the maximum input voltage linearly from 60 V_{DC} to 40 V_{DC} and the maximum output power linearly from 100 percent to 75 percent. Load current is split equally between outputs. <u>1</u>/

<u>2/</u> <u>3</u>/ Limit represents 80 percent of total rated output current. To achieve rated output power, the remaining 20 percent of the total rated output current must be provided by the other output. Guaranteed for a DC to 20 MHz bandwidth. Tested using a 20 KHz to 10 MHz bandwidth.

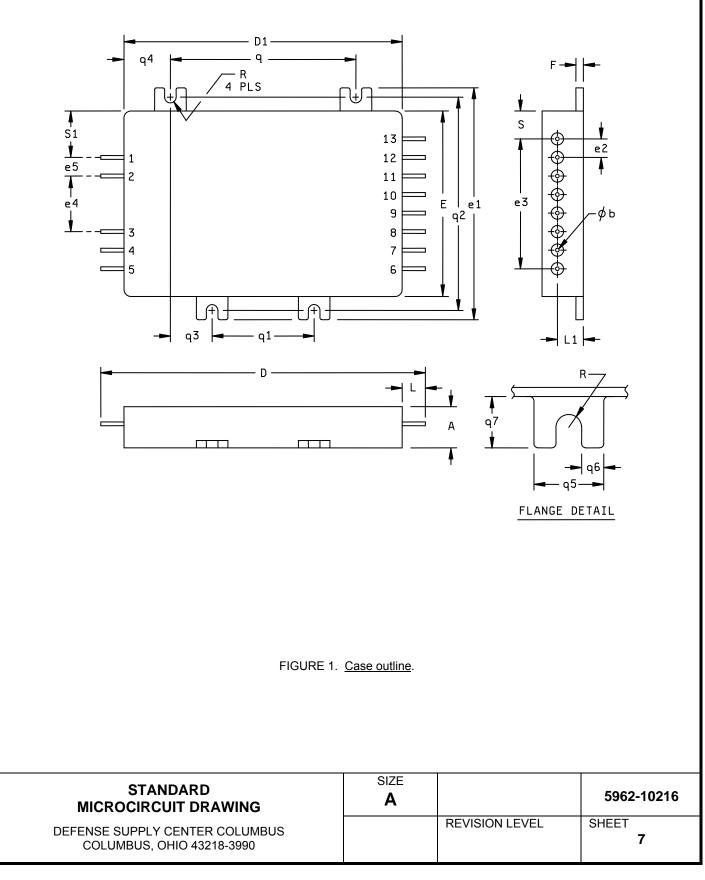
<u>4/</u> <u>5</u>/ Cross regulation is measured with 20 percent rated load on output under test while changing the load on the other output from 20 percent to 80 percent of rated.

<u>6</u>/ Parameter is tested as part of design characterization or after design changes. Thereafter, parameter shall be guaranteed to the limits specified. Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load

<u>7</u>/ in excess of the maximum limit may interfere with the proper operation of the converter's overload protection, causing erratic behavior during turn-on.

<u>8</u>/ Overload power dissipation is defined as the device power dissipation with the load set such that V_{OUT} = 90 percent of nominal.

9/ Load step transition time \geq 10 μ s.


10/ Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of its steady state value

11/ Line step transition time \geq 10 μ s.

12/ Turn-on delay time is measured from either a step application of input power or a logic low to a logic high transition on the inhibit pin (pin 3) to the point where V_{OUT} = 90 percent of nominal.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 6

Case outline X.

Case outline X - Continued.

Symbol	Millin	neters	Inc	hes
	Min	Max	Min	Max
А		11.30		.445
D	88.90) REF	3.50	REF
D1		77.85		3.065
E		52.20		2.055
e1	63.37	63.63	2.495	2.505
e2/e5	4.95	5.21	.195	.205
e3	35.56	B REF	1.400) REF
e4	15.11	15.37	.595	.605
F		2.03		.080
L/q7	6.10	6.60	.240	.260
L1	6.48	6.73	.255	.265
q	50.55	55.05	1.990	2.010
q1	27.69	28.19	1.090	1.110
q2	58.17	58.67	2.290	2.310
q3	11.18	11.67	.440	.460
q4	12.57	12.83	.495	.505
q5	9.91	10.41	.390	.410
q6	3.30	3.81	.130	.150
R		1.588		.625
S	7.37	7.87	.290	.310
S1	12.45	12.95	.490	.510
Øb	.89	1.14	.035	.045

NOTES:

- 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Lead identification for reference only.
- 3. Case outline weight: 110 grams maximum.

FIGURE 1. Case outline - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 8

Device type	01
Case outline	х
Terminal number	Terminal symbol
1	+ Input Voltage
2	Input return
3	Inhibit
4	Sync input
5	Sync output
6	Case Ground
7	No connection
8	Output Adjust
9	No connection
10	No connection
11	- Output Voltage
12	Output Return
13	+ Output Voltage

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 9

nts.
nt

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	
Final electrical parameters	1*, 2, 3, 4, 5, 6
Group A test requirements	1, 2, 3, 4, 5, 6
Group C end-point electrical parameters	1, 2, 3, 4
End-point electrical parameters for radiation hardness assurance (RHA) devices	Not applicable

* PDA applies to subgroup 1.

4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.
- 4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.
- 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.
- 4.3.5 Radiation Hardness Assurance (RHA) inspection. RHA inspection is not currently applicable to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 10

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 <u>Sources of supply</u>. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-10216
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 11

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 10-03-23

Approved sources of supply for SMD 5962-10216 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-1021601KXA	52467	M3G2815D/CK
5962-1021601KXC	52467	M3G2815D/CK

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u> Vendor name and address

52467

International Rectifier – Hi Rel Products, Incorporated 2520 Junction Ave San Jose, CA 95134

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.