

# **Protection Device**

TVS (Transient Voltage Suppressor)

# ESD221-U1-02EL

Uni-directional, 5.3 V, 38 pF, 0402, RoHS and Halogen Free compliant

ESD221-U1-02EL

# Data Sheet

Revision 1.0, 2014-05-20 Final

# Power Management & Multimarket

Edition 2014-05-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com)

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



**Product Overview** 

# 1 Product Overview

### 1.1 Features

- ESD / transient protection of data and V<sub>BUS</sub> lines according to:
  - IEC61000-4-2 (ESD): ±25 kV (air) ±20 kV (contact)
  - IEC61000-4-4 (EFT): ±2.5 kV / ±50 A (5/50 ns)
  - IEC61000-4-5 (Surge): ±5.5 A (8/20 μs)
- Uni-directional, working voltage up to V<sub>RWM</sub> = ±5.3 V
- Medium capacitance: C<sub>L</sub> = 38 pF (typical)
- Very low clamping voltage  $V_{CL}$  = +10 / -5 V (typical) at  $I_{TLP}$  = 16 A
- Low reverse current  $I_{\rm R}$  < 100 nA at  $V_{\rm R}$  = 3.3 V
- · Pb-free (RoHS compliant) and halogen free package



## 1.2 Application Examples

- V<sub>BUS</sub> line protection in USB ports
- · Keypad, touchpad, buttons, convenience keys
- LCD displays, Camera, audio lines, mobile communication, Consumer products (E-Book, MP3, DVD, DSC...)
- · Notebooks tablets and desktop computers and their peripherals

## 1.3 Product Description

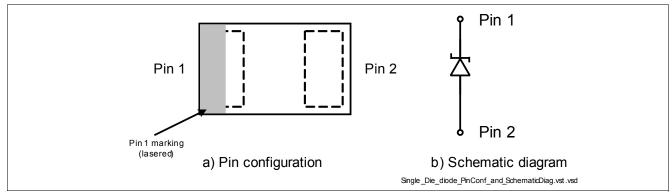



Figure 1-1 Pin Configuration and Schematic Diagram

#### Table 1-1Part Information

| Туре           | Package   | Configuration           | Marking code |
|----------------|-----------|-------------------------|--------------|
| ESD221-U1-02EL | TSLP-2-19 | 1 line, uni-directional | E            |



Maximum Ratings

# 2 Maximum Ratings

| Parameter                                                              | Symbol           | Values     | Unit |
|------------------------------------------------------------------------|------------------|------------|------|
| ESD air discharge <sup>1)</sup><br>ESD contact discharge <sup>1)</sup> | V <sub>ESD</sub> | ±25<br>±20 | kV   |
| Peak pulse power <sup>2)</sup>                                         | P <sub>PK</sub>  | 60         | W    |
| Peak pulse current <sup>2)</sup>                                       | I <sub>PP</sub>  | ±5.5       | A    |
| Operating temperature range                                            | T <sub>OP</sub>  | -55 to 125 | °C   |
| Storage temperature                                                    | T <sub>stg</sub> | -65 to 150 | °C   |
|                                                                        | - sig            |            |      |

| Table 2-1 | <b>Maximum Ratings</b> at $T_{A}$ = 25 °C, unless otherwise specified |
|-----------|-----------------------------------------------------------------------|
|           |                                                                       |

1)  $V_{\text{ESD}}$  according to IEC61000-4-2

2) Non-repetitive current pulse 8/20µs exponential decay waveform according to IEC61000-4-5

#### Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

# **3** Electrical Characteristics at $T_A = 25 \degree C$ , unless otherwise specified

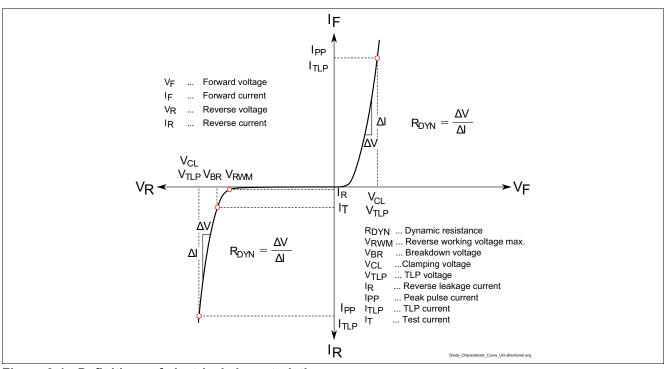



Figure 3-1 Definitions of electrical characteristics



### Electrical Characteristics at $T_A$ = 25 °C, unless otherwise specified

| Parameter               | Symbol         | Values |      |      | Unit | Note / Test Condition        |
|-------------------------|----------------|--------|------|------|------|------------------------------|
|                         |                | Min.   | Тур. | Max. |      |                              |
| Reverse working voltage | $V_{RWM}$      | -      | -    | 5.3  | V    | from Pin 1 to Pin 2          |
| Breakdown voltage       | $V_{BR}$       | 5.7    | 6.4  | 7.5  | V    | <i>I</i> <sub>T</sub> = 1 mA |
| Reverse current         | I <sub>R</sub> | -      | -    | 100  | nA   | V <sub>R</sub> = 3.3 V       |

## Table 3-1DC Characteristics at $T_A$ = 25 °C, unless otherwise specified

**Table 3-2** AC Characteristics at  $T_A = 25$  °C, unless otherwise specified

| Parameter         | Symbol  | Values |      |      | Unit | Note / Test Condition          |
|-------------------|---------|--------|------|------|------|--------------------------------|
|                   |         | Min.   | Тур. | Max. |      |                                |
| Line capacitance  | $C_{L}$ | -      | 38   | _    | pF   | $V_{\rm R}$ = 0 V, f = 1 MHz   |
|                   |         | -      | 20   | -    |      | $V_{\rm R}$ = 2.5 V, f = 1 MHz |
| Series inductance | Ls      | -      | 0.4  | _    | nH   |                                |

| Parameter                        | Symbol          | Values |      |      | Unit | Note / Test Condition                                               |
|----------------------------------|-----------------|--------|------|------|------|---------------------------------------------------------------------|
|                                  |                 | Min.   | Тур. | Max. |      |                                                                     |
| Clamping voltage <sup>1)</sup>   | V <sub>CL</sub> | _      | 10   | -    | V    | $I_{\text{TLP}}$ = 16 A, $t_{\text{p}}$ = 100 ns,<br>Pin 1 to Pin 2 |
|                                  |                 | -      | 14   | -    |      | $I_{\text{TLP}}$ = 30 A, $t_{\text{p}}$ = 100 ns,<br>Pin 1 to Pin 2 |
|                                  |                 | -      | 5    | -    |      | $I_{\text{TLP}}$ = 16 A, $t_{\text{p}}$ = 100 ns,<br>Pin 2 to Pin 1 |
|                                  |                 | _      | 7    | _    |      | $I_{\rm TLP}$ = 30 A, $t_{\rm p}$ = 100 ns,<br>Pin 2 to Pin 1       |
| Clamping voltage <sup>2)</sup>   |                 | _      | 7    | 9    |      | $I_{\rm PP}$ = 1 A, $t_{\rm p}$ = 8/20 µs,<br>Pin 1 to Pin 2        |
|                                  |                 | _      | 8    | 10   |      | $I_{\rm PP}$ = 3.5 A, $t_{\rm p}$ = 8/20 µs,<br>Pin 1 to Pin 2      |
|                                  |                 | _      | 9    | 11   |      | I <sub>PP</sub> = 5.5 A, t <sub>p</sub> = 8/20 μs<br>Pin 1 to Pin 2 |
|                                  |                 | _      | 1.2  | 2    |      | $I_{\rm PP}$ = 1 A, $t_{\rm p}$ = 8/20 µs,<br>Pin 2 to Pin 1        |
|                                  |                 | _      | 2    | 3    |      | I <sub>PP</sub> = 3.5 A, t <sub>p</sub> = 8/20 μs<br>Pin 2 to Pin 1 |
|                                  |                 | -      | 2.5  | 3.5  |      | $I_{\rm PP}$ = 5.5 A, $t_{\rm p}$ = 8/20 µs<br>Pin 2 to Pin 1       |
| Dynamic resistance <sup>1)</sup> | $R_{DYN}$       | -      | 0.3  | -    | Ω    | <i>t</i> <sub>p</sub> = 100 ns                                      |

5

#### **Table 3-3 ESD and Surge Characteristics** at $T_A = 25 \degree C$ , unless otherwise specified

1) Please refer to Application Note AN210[1] TLP parameter:  $Z_0 = 50 \Omega$ ,  $t_p = 100$  ns,  $t_r = 300$  ps.

2) Non-repetitive current pulse 8/20µs exponential decay waveform according to IEC61000-4-5



#### **Typical Characteristics Diagrams**

# 4 Typical Characteristics Diagrams

Typical characteristics diagrams at  $T_A$  = 25°C, unless otherwise specified

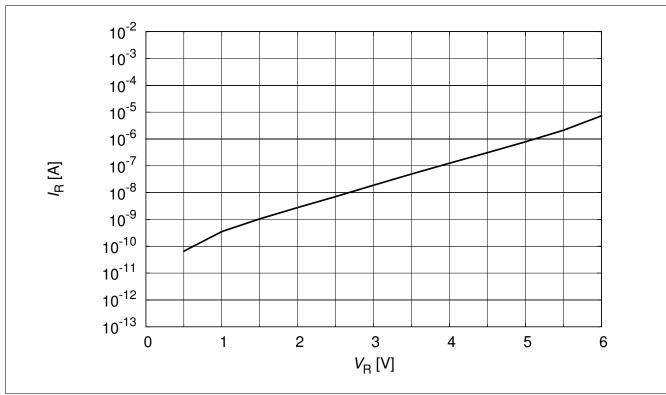



Figure 4-1 Reverse leakage current:  $I_{R} = f(V_{R})$ 

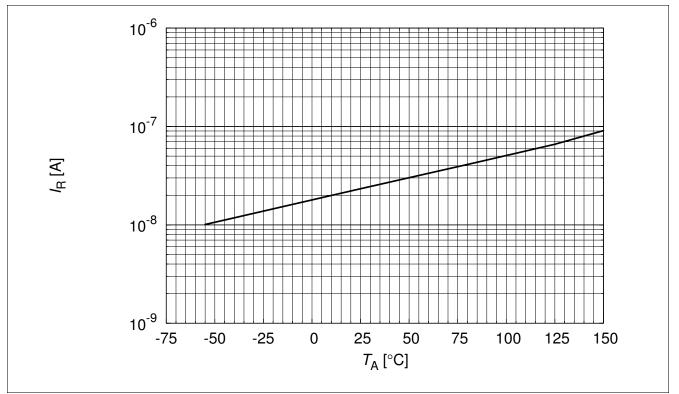



Figure 4-2 Reverse leakage current:  $I_{R} = f(T_{A}), V_{R} = 3.3 V$ 



**Typical Characteristics Diagrams** 





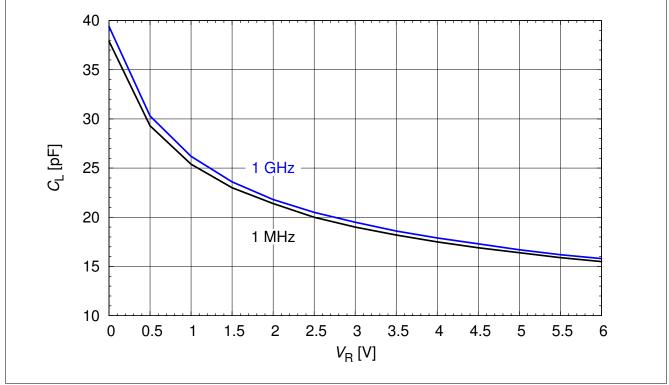



Figure 4-4 Line capacitance:  $C_{\rm L} = f(V_{\rm R})$ 



## ESD221-U1-02EL

#### **Typical Characteristics Diagrams**

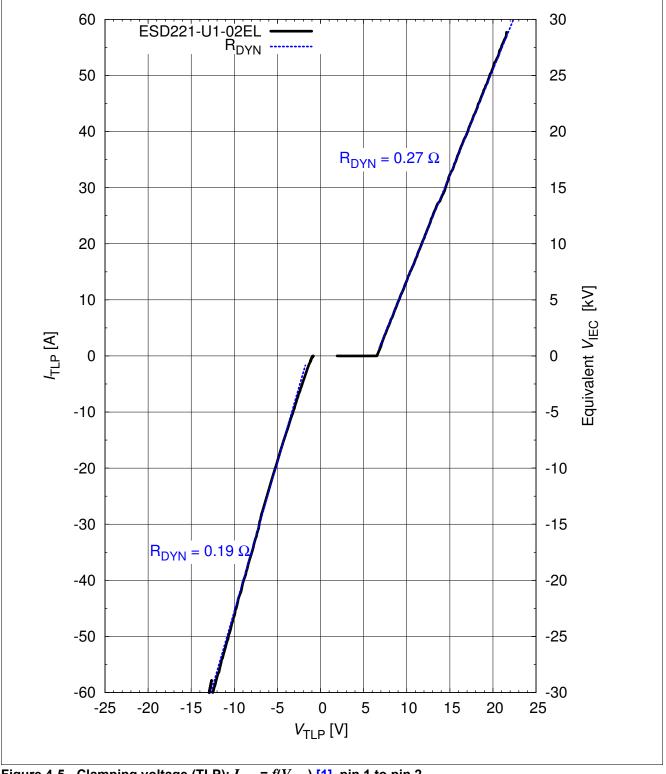
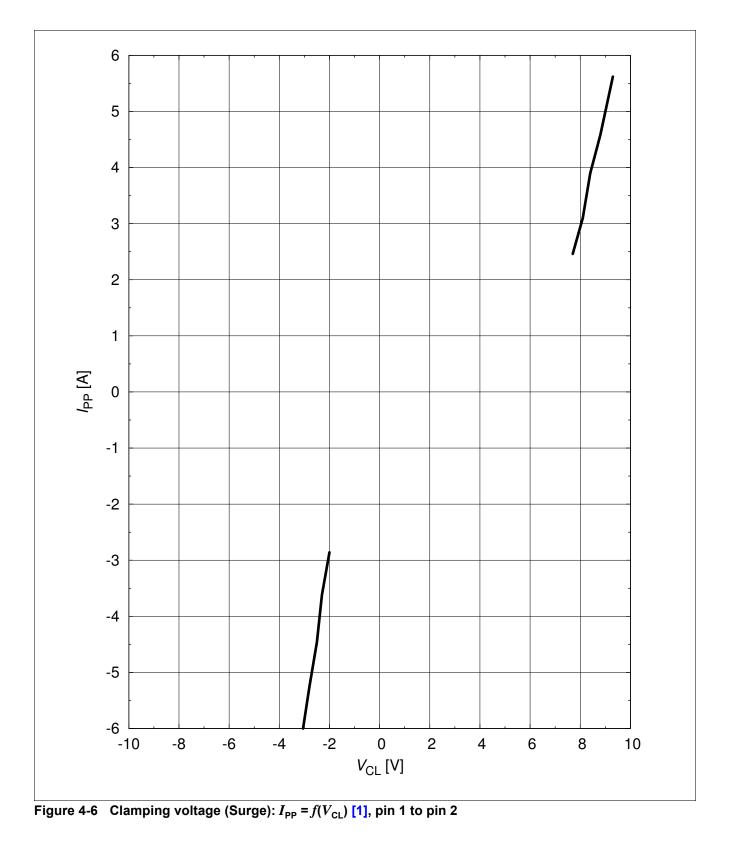




Figure 4-5 Clamping voltage (TLP):  $I_{TLP} = f(V_{TLP})$  [1], pin 1 to pin 2



## ESD221-U1-02EL

#### **Typical Characteristics Diagrams**







**Typical Characteristics Diagrams** 

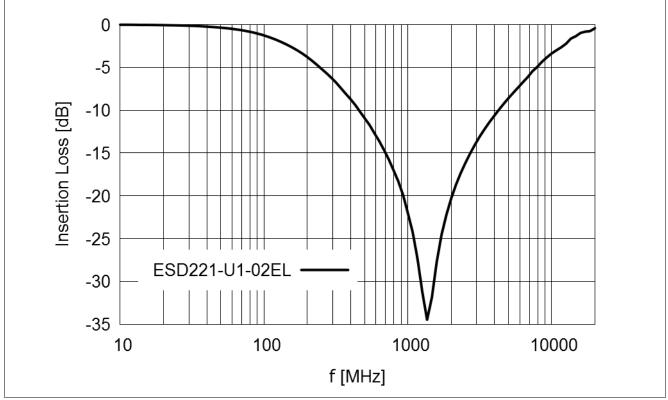
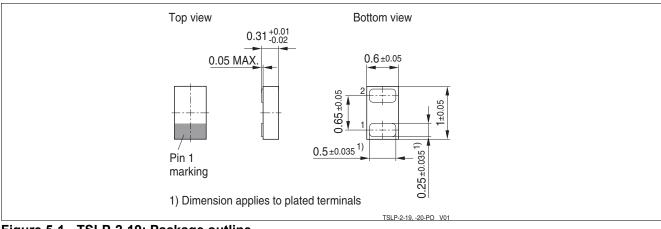
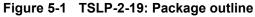
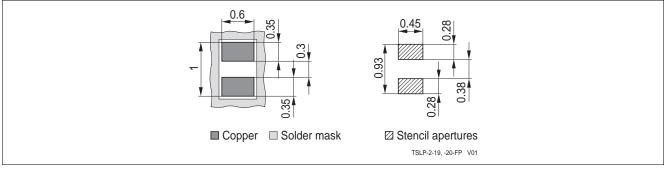


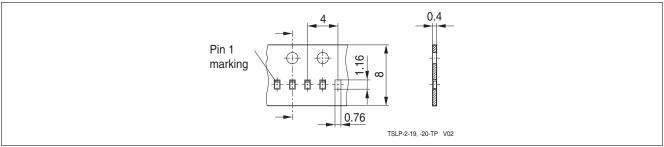

Figure 4-7 Insertion loss vs. frequency in a 50  $\Omega$  system


Downloaded from Arrow.com.





#### **Package Information**

# 5 Package Information


### 5.1 TSLP-2-19













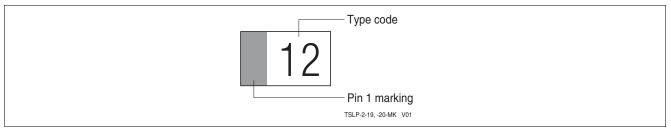



Figure 5-4 TSLP-2-19: Marking example, Type code see: Table 1-1 "Part Information" on Page 3





References

## References

- [1] Infineon AG **Application Note AN210:** Effective ESD Protection design at System Level Using VF-TLP Characterization Methodology
- [2] Infineon AG Recommendations for PCB Assembly of Infineon TSLP and TSSLP Packages



| Revision History |                                                  |  |  |  |  |  |
|------------------|--------------------------------------------------|--|--|--|--|--|
| Page or Item     | Subjects (major changes since previous revision) |  |  |  |  |  |
| Revision 1.0, 2  | 2014-05-20                                       |  |  |  |  |  |
| 5                | Update of Table 2-2)                             |  |  |  |  |  |
|                  |                                                  |  |  |  |  |  |
|                  |                                                  |  |  |  |  |  |
|                  |                                                  |  |  |  |  |  |
|                  |                                                  |  |  |  |  |  |

#### Trademarks of Infineon Technologies AG

AURIX<sup>™</sup>, BlueMoon<sup>™</sup>, C166<sup>™</sup>, CanPAK<sup>™</sup>, CIPOS<sup>™</sup>, CIPURSE<sup>™</sup>, COMNEON<sup>™</sup>, EconoPACK<sup>™</sup>, CoolMOS<sup>™</sup>, CoolSET<sup>™</sup>, CORECONTROL<sup>™</sup>, CROSSAVE<sup>™</sup>, DAVE<sup>™</sup>, EasyPIM<sup>™</sup>, EconoBRIDGE<sup>™</sup>, EconoDUAL<sup>™</sup>, EconoPIM<sup>™</sup>, EiceDRIVER<sup>™</sup>, eupec<sup>™</sup>, FCOS<sup>™</sup>, HITFET<sup>™</sup>, HybridPACK<sup>™</sup>, I<sup>2</sup>RF<sup>™</sup>, ISOFACE<sup>™</sup>, IsoPACK<sup>™</sup>, MIPAQ<sup>™</sup>, ModSTACK<sup>™</sup>, my-d<sup>™</sup>, NovalithIC<sup>™</sup>, OmniTune<sup>™</sup>, OptiMOS<sup>™</sup>, ORIGA<sup>™</sup>, PRIMARION<sup>™</sup>, PrimePACK<sup>™</sup>, PrimeSTACK<sup>™</sup>, PRO-SIL<sup>™</sup>, PROFET<sup>™</sup>, RASIC<sup>™</sup>, ReverSave<sup>™</sup>, SatRIC<sup>™</sup>, SIEGET<sup>™</sup>, SINDRION<sup>™</sup>, SIPMOS<sup>™</sup>, SMARTi<sup>™</sup>, SmartLEWIS<sup>™</sup>, SOLID FLASH<sup>™</sup>, TEMPFET<sup>™</sup>, thinQ!<sup>™</sup>, TRENCHSTOP<sup>™</sup>, TriCore<sup>™</sup>, X-GOLD<sup>™</sup>, X-PMU<sup>™</sup>, XMM<sup>™</sup>, XPOSYS<sup>™</sup>.

#### Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL<sup>™</sup>, REALVIEW<sup>™</sup>, THUMB<sup>™</sup>, µVision<sup>™</sup> of ARM Limited, UK. AUTOSAR<sup>™</sup> is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS<sup>™</sup> of Trimble Navigation Ltd. EMV<sup>™</sup> of EMVCo, LLC (Visa Holdings Inc.). EPCOS<sup>™</sup> of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC<sup>™</sup> of Commission Electrotechnique Internationale. IrDA<sup>™</sup> of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare <sup>™</sup> of NXP. MIPI<sup>™</sup> of MIPI Alliance, Inc. MIPS<sup>™</sup> of MIPS Technologies, Inc., USA. muRata<sup>™</sup> of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision<sup>™</sup> of OmniVision Technologies, Inc. Openwave<sup>™</sup> Openwave Systems Inc. RED HAT<sup>™</sup> Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2010-10-26

#### www.infineon.com

w w w . Thi ti n e o h . c o h

Published by Infineon Technologies AG