Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)

High Temperature 150°C, X8G Dielectric, 10 – 250 VDC (Commercial & Automotive Grade)

Overview

KEMET's X8G Class I dielectric features a 150°C maximum operating temperature, offering the latest in high temperature dielectric technology and reliability for extreme temperature applications and under the hood applications. X8G exhibits no change in capacitance with respect to voltage and boasts a minimal change in capacitance with reference to ambient temperature. It is a suitable replacement for higher capacitance and larger footprint devices that fail to offer capacitance stability. Capacitance change is limited to ±30ppm/°C from -55°C to +150°C.

Driven by the demand for a more robust and reliable component, X8G dielectric capacitors were developed for critical applications where reliability and capacitance

stability at higher operating temperatures are a concern. These capacitors are widely used in automotive for under the hood and harsh environment as well as general high temperature applications.

In addition to commercial grade, automotive grade devices are available and meet Automotive Electronics Council's AEC-Q200 qualification requirements. Also available with flexible termination technology which inhibits the transfer of board stress to the rigid ceramic body, therefore mitigating flex cracks which can result in low IR or short circuit failures.

Benefits

- -55°C to +150°C operating temperature range
- · Lead (Pb)-Free, RoHS and REACH compliant
- EIA 0402, 0603, 0805, 1206, 1210, 1812 & 2220 case sizes
- DC voltage ratings of 10V, 16V, 25V, 50V, 100V, 200V & 250V
- Capacitance offerings ranging from 0.5pF to 0.47μF
- Available capacitance tolerances of ±0.10pF, ±0.25pF, ±0.5pF, ±1%, ±2%, ±5%, ±10% & ±20%,
- Extremely low ESR and ESL
- · High thermal stability
- · High ripple current capability
- No capacitance change with respect to applied rated DC voltage
- Non-polar device, minimizing installation concerns
- · Commercial and Automotive (AEC-Q200) grades available
- 100% pure matte tin-plated termination finish that allowing for excellent solderability.
- Flexible Termination option available

Applications

- · Decoupling
- Bypass
- Filtering
- · Under the hood
- · Transient voltage suppression
- Safety relevant circuits

Ordering Information

С	1210	С	184	K	3	Т	Α	С	AUTO
Ceramic	Case Size (L" x W")	Specification/ Series ¹	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VDC)	Dielectric	Failure Rate/Design	Termination Finish ²	Packaging/ Grade (C-Spec)
	0402 0603 0805 1206 1210 1812 2220	C = Standard X = Flexible Termination	Two significant digits and number of zeros	B = ±0.10 pF C = ±0.25 pF D = ±0.5 pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20%	8 = 10 4 = 16 3 = 25 5 = 50 1 = 100 2 = 200 A = 250	T = X8G	A = N/A	C = 100% Matte Sn L = SnPb (5% Pb minimum)	See "Packaging C-Spec Ordering Options Table"

¹ The flexible termination option is not available on EIA 0402 case size product. "C" must be used in the 6th character position when ordering this case size.

Packaging C-Spec Ordering Options Table

Packaging Type	Packaging/Grade Ordering Code (C-Spec)
Commerc	ial Grade ¹
Bulk Bag	Not Required (Blank)
7" Reel/Unmarked	TU
13" Reel/Unmarked	7411 (EIA 0603 and smaller case sizes) 7210 (EIA 0805 and larger case sizes)
7" Reel/Unmarked/2 mm pitch ²	7081
13" Reel/Unmarked/2 mm pitch ²	7082
Automoti	ve Grade ³
7" Reel	AUTO
13" Reel/Unmarked	AUT07411 (EIA 0603 and smaller case sizes) AUT07210 (EIA 0805 and larger case sizes)
7" Reel/Unmarked/2 mm pitch ²	3190
13" Reel/Unmarked/2 mm pitch ²	3191

¹ Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.

² Additional termination finish options may be available. Contact KEMET for details.

² SnPb termination finish option is not available on automotive grade product.

¹ The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked.

² The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

³ Reeling tape options (Paper or Plastic) are dependent on capacitor case size (L" x W") and thickness dimension. See "Chip Thickness/Tape & Reel Packaging Quantities" and "Tape & Reel Packaging Information".

³ For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information".

³ All Automotive packaging C-Specs listed exclude the option to laser mark components. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking".

Automotive C-Spec Information

KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "AUTO." This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below.)

Product Change Notification (PCN)

The KEMET product change notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- · Changes in manufacturing site
- Product obsolescence

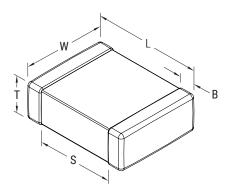
KEMET Automotive	Customer Notifica	tion Due To:	Days Prior To
C-Spec	Process/Product change	Obsolescence*	Implementation
KEMET assigned ¹	Yes (with approval and sign off)	Yes	180 days minimum
AUT0	Yes (without approval)	Yes	90 days minimum

¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

Production Part Approval Process (PPAP)

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design records and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part.


KEMET Automotive		PPAP (Product	Part Approval	Process) Leve	I
C-Spec	1	2	3	4	5
KEMET assigned ¹	•	•	•	•	•
AUT0			0		

¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

- Part number specific PPAP available
- Product family PPAP only

Dimensions - Millimeters (Inches)

Standard Termination

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0402	1005	1.00 (0.040) ±0.05 (0.002)	0.50 (0.020) ±0.05 (0.002)		0.30 (0.012) ±0.10 (0.004)	0.30 (0.012)	Solder Reflow Only
0603	1608	1.60 (0.063) ±0.15 (0.006)	0.80 (0.032) ±0.15 (0.006)		0.35 (0.014) ±0.15 (0.006)	0.70 (0.028)	
0805	2012	2.00 (0.079) ±0.20 (0.008)	1.25 (0.049) ±0.20 (0.008)		0.50 (0.02) ±0.25 (0.010)	0.75 (0.030)	Solder Wave or Solder Reflow
1206	3216	3.20 (0.126) ±0.20 (0.008)	1.60 (0.063) ±0.20 (0.008)	See Table 2 for Thickness	0.50 (0.02) ±0.25 (0.010)		
1210	3225	3.20 (0.126) ±0.20 (0.008)	2.50 (0.098) ±0.20 (0.008)		0.50 (0.02) ±0.25 (0.010)	NI/A	
1812	4532	4.50 (0.177) ±0.30 (0.012)	3.20 (0.126) ±0.30 (0.012)		0.60 (0.024) ±0.35 (0.014)	N/A	Solder Reflow Only
2220	5650	5.70 (0.224) ±0.40 (0.016)	5.00 (0.197) ±0.40 (0.016)		0.60 (0.024) ±0.35 (0.014)		

Flexible Termination

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0603	1608	1.60 (0.063) ±0.17 (0.007)	0.80 (0.032) ±0.15 (0.006)		0.45 (0.018) ±0.15 (0.006)	0.58 (0.023)	0-14
0805	2012	2.00 (0.079) ±0.30 (0.012)	1.25 (0.049) ±0.30 (0.012)		0.50 (0.02) ±0.25 (0.010)	0.75 (0.030)	Solder Wave or Solder Reflow
1206	3216	3.30 (0.130) ±0.40 (0.016)	1.60 (0.063) ±0.35(0.013)	See Table 2 for	0.60 (0.024) ±0.25 (0.010)		Solder Kellow
1210	3225	3.30 (0.130) ±0.40 (0.016)	2.60(0.102) ±0.30(0.012)	Thickness	0.60 (0.024) ±0.25 (0.010)	NI/A	
1812	4532	4.50 (0.178) ±0.40 (0.016)	3.20 (0.126) ±0.30 (0.012)		0.70 (0.028) ±0.35 (0.014)	N/A	Solder Reflow Only
2220	5650	5.90 (0.232) ±0.75 (0.030)	5.00 (0.197) ±0.40 (0.016)		0.70 (0.028) ±0.35 (0.014)		·

Qualification/Certification

Commercial grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.

Environmental Compliance

Lead (Pb)-free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).

Table 1A – Standard Termination Capacitance Range/Selection Waterfall (0402 – 1206 Case Sizes)

		Case Size/Series		CO	4020	;				CO	603	C					C	080	5C					C1	120	6C		
Capacitance	Cap	Voltage Code	8 4	3	5 1	2	Α	8	4	3	5	1	2	Α	8	4	3	5	1	2	Α	8	4	3	5	1	2	Α
	Code	Rated Voltage (VDC)	10 91	25	20 21	200	250	10	16	25	20	100	200	250	10	16	25	20	100	200	250	10	16	25	20	100	200	250
		Capacitance Tolerance	,		, -	, ,,	, , ,	•			t Ava	ailab	ility	and					Co	des		•					•	,,,
0.50 & 0.75 pF	508 & 758		BB BB	BB	BB			CF	CF	CF	CF	CF	CF	CF		DN	DN	DN	DN		DN							
0.75 pF 1.0 - 9.1 pF*	758 109 - 919*	B C D B C D	BB BB BB BB	BB BB	BB BB			CF CF	CF CF	CF CF	CF CF	CF	CF	CF CF	DN DN	EB												
10 pF	100	F G J K M	BB BB	BB	BB			CF	CF	CF	CF	CF	CF	CF	DN	EB												
11 pF	110	F G J K M	BB BB	ВВ	ВВ			CF	CF	CF	CF	CF	CF	CF	DN	EB												
12 pF	120	F G J K M	BB BB	BB	ВВ			CF	CF	CF	CF	CF	CF	CF	DN	EB												
13 pF	130	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
15 pF	150		BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
16 pF	160	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF		DN	DN	DN	DN	DN	DN	EB						
18 pF	180	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN		DN	DN	DN	DN	DN	EB						
20 pF	200 220	F G J K M F G J K M	BB BB BB BB	BB	BB BB			CF CF	CF CF	CF CF		CF	CF CF	CF CF	DN DN	DN DN	DN	DN	DN DN	DN DN	DN DN	EB EB						
22 pF 24 pF	240	F G J K M F G J K M	BB BB	BB BB	BB B			CF	CF	CF		CF	CF	CF	DN	DN	DN DN	DN DN	DN	DN	DN	EB						
27 pF	270	F G J K M	BB BB	BB	BB			CF	CF	CF	CF	CF	CF	CF	DN	EB												
30 pF	300	F G J K M	BB BB	BB	BB			CF	CF	CF	CF	CF	CF	CF	DN	EB												
33 pF	330	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
36 pF	360	F G J K M	BB BB	ВВ	ВВ			CF	CF	CF		CF	CF	CF	DN	EB												
39 pF	390	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
43 pF	430		BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
47 pF	470	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
51 pF	510	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF	DN	EB												
56 pF	560	F G J K M	BB BB	BB	BB			CF	CF	CF CF		CF	CF	CF CF	DN DN	DN	DN	DN	DN	DN DN	DN	EB	EB EB	EB	EB EB	EB EB	EB	EB EB
62 pF 68 pF	620 680	F G J K M F G J K M	BB BB BB BB	BB BB	BB BB			CF CF	CF CF	CF		CF CF	CF CF	CF		DN DN	DN DN	DN DN	DN DN	DN	DN DN	EB EB	EB	EB EB	EB	EB	EB EB	EB
75 pF	750	F G J K M	BB BB	BB	BB			CF	CF	CF		CF	CF	CF		DN	DN	DN	DN	DN	DN	EB						
82 pF	820	F G J K M	BB BB	BB	BB			CF	CF	CF			CF	CF	DN	DN	DN	DN	DN		DN	EB						
91 pF	910	F G J K M	BB BB	BB	ВВ			CF	CF	CF		CF	CF	CF	DN	EB												
100 pF	101	F G J K M	BB BB	ВВ	BB BI	в ВВ	ВВ	CF	CF	CF	CF	CF	CF	CF	DN	EB												
110 pF	111	F G J K M	BB BB	ВВ	BB BI	в ВВ	ВВ	CF	CF	CF	CF	CF	CF	CF	DN	EB												
120 pF	121	F G J K M	BB BB	ВВ	BB BI	в ВВ	BB	CF	CF	CF	CF	CF	CF	CF	DN	EB												
130 pF	131	F G J K M	BB BB	BB	BB BI	BB	BB	CF	CF	CF	CF	CF	CF	CF	DN	EB												
150 pF	151	F G J K M	BB BB	BB	BB BI	BB BB	BB	CF	CF	CF	CF	CF	CF	CF	DN	EB												
160 pF	161	F G J K M	BB BB	BB	BB BI		BB	CF	CF	CF		CF	CF	CF	DN	EB												
180 pF	181	F G J K M	BB BB	BB	BB BI		BB	CF	CF	CF		CF	CF	CF	DN	EB												
200 pF	201	F G J K M	BB BB		BB BE		BB	CF	CF	CF		CF	CF	CF		DN	DN	DN	DN	DN	DN	EB						
220 pF	221	F G J K M	BB BB		BB BI		ВВ	CF	CF	CF			CF	CF	DN	EB												
240 pF	241	F G J K M	BB BB	1 1	BB BE		BB	CF	CF	CF			CF		DN	EB												
270 pF	271	F G J K M	BB BB	BB	BB BI		BB	CF	CF	CF		CF	CF	CF	DN	EB												
300 pF	301	F G J K M	BB BB	BB	BB BI		BD BD	CF	CF	CF		CF	CF	CF	DN	EB												
330 pF 360 pF	331 361	F G J K M	BB BB	BB BB	BB BI	_	ΒD	CF CF	CF CF	CF CF		CF CF	CF CF	CF CF	DN DN	DN	DN DN	DN DN	DN	DN	DN DN	EB EB						
390 pF	391	F G J K M F G J K M		BB	BB BI			CF	CF	CF		CF	CF	CF		DN DN	DN	DN	DN DN			EB						
430 pF	431		BB BB	BB	BB BI			CF	CF	CF		CF	CF			DN	DN	DN	DN	DN	DN	EB						
470 pF	471	F G J K M	BB BB		BB BI			CF	CF	CF		CF	CF	CF		DN	DN	DN	DN	DP	DP	EB						
510 pF	511		BB BB		BB BI			CF		CF			CF	CF		DN	DN		DN		DN	EB						
560 pF	561	F G J K M	BB BB		BB BI			CF		CF			CF	CF		DN	DN		DN	_	DN	EB						
620 pF	621	F G J K M	BB BB	1 1	BB BI			CF	CF	CF			CF			DN	DN		DN	DN	DN	EB						
680 pF	681	F G J K M	BB BB	1 1	BB BE			CF	CF	CF		CF	CF	CF	DN	EB												
750 pF	751	F G J K M		1 1	BB BI			CF	CF	CF			CF			DN	DN				DN	EB						
820 pF	821	F G J K M	BB BB	ВВ	вв в			CF	CF	CF		CF	CF	CF	DN	DN	DN	DN	DN		DN	ЕВ	EB	EB	EB	EB	EB	EB
910 pF	911	F G J K M		BB	BB BI	3		CF	CF	CF	CF	CF	CF	CF	DN	DN	DN	DN	DP	DP	DP	EB						
1,000 pF	102	F G J K M		BB	BB BI	3		CF	CF	CF		CF	CF	CF	DN	DN	DN	DN	DP	DP	DP	EB	EB	EB	EB	EB	EE	EE
1,100 pF	112	F G J K M			ВВ			CF	CF	CF				СН		DN		DN	DP	DN	DN	EB						
1,200 pF	122	F G J K M	BB BB	-	BB			CF	CF	CF				СН	DN	DN		DN		DN	DN	EB						
		Rated Voltage (VDC)	10 16	25	50	200	250	10	92	25	20	100	200	250	10	16	25	20	100	200	250	10	16	25	20	100	200	250
Capacitance	Cap Code	Voltage Code	8 4	3	5 1	2	A	8	4	3	5	1	2	A	8	4	3	5	1	2	A	8	4	3	5	1	2	A
		Case Size/Series		CO	402C					C	0603	С					C	080	5C					C	1206	SC.		

Table 1A – Standard Termination Capacitance Range/Selection Waterfall (0402 – 1206 Case Sizes) cont.

	Сар		as	se	Si	ze	/S	er	ie	S			C)40	2C						C	060	3C					C	080	5C					С	120	6C		
Capacitance	Code			Vo	lta	ge	Coc	le			8	4	3	5	1	2	2	Α	8	4	3	5	1	2	A	8	4	3	5	1	2	A	8	4	3	5	1	2	A
	Coue	Г	Ra	ted	Vo	lta	ge (VD	C)	Ī	9	16	25	20	100	9	3	250	10	16	25	20	100	200	250	2	16	25	50	100	200	250	9	9	25	20	100	200	250
		L	`an	ari	tan		Tol	ora	nc	,†					-		-	•••					aila	bilit	y an					Co	des	, ,,						, ,,	,,,
1000 5	100	Ļ	,up	uci	_	_		_	_	4	20	20	-						0.5					_	hip								Len					50	F0
1,300 pF	132	ı							(N			BB BB	BB	BB BB					CF CF	CF CF	CF CF	CF	CF	CH	-	DP	DP	_		DP	_	_	EB EB	_	_			_	EC EC
1,500 pF	152	l				= 0			(N				BB	BB							-	CF	CF	CH		DP	DP	DP	DP	DP	DN		EB	EB					ED
1,600 pF	162	ł				= 0			(N			BB	BB						CF	CF CF	CF CF	CF	CF	CH	1 -	DP DP	DP DP	DP	DP	DP	DN	DN	EB	EB					ED
1,800 pF	182	ł				- 1 -						BB BB	BB						CF CF	CF	CF	CF CF	CF CF	CH	1 -		1	DP	DP	DP	DN	DN	EB	EB				ED ED	ED
2,000 pF	202 222	l				: C						BB BB	BB BB							CF	CF		1 -	CH	1 -	DN		DN	1	DN	DN	DN							ED
2,200 pF		L			_	_	_		(N	_	ВВ	BB	BB						CF	-	CF	CF CF	CF	CH	CH	DN	DN	DN	_	DN	DN	DN	EB	EB	_		EE	EE	EC
2,400 pF	242				F	- 1 -			(N										CF	CF CF	CF	CF	CF CF			DN	DN	DN		DN	DN	DN	EB EB	EB		EB	EC	EC	EC
2,700 pF 3,000 pF	272 302				F				(CF CF	CF	CF	CF	CF			DN DN	EC	EB		EB	EC EC	EC EB	EB						
	302	ı			F	١,													CF	CF	CF	CF	CF			DN		DN	DN		DN	DN	EC	EC	1 -	EC	1	EB	EB
3,300 pF		ı			F	- 1 -			(CF	CF	CF	CF	CF			DN		DN	DN	DN DN	DP	DP	EC	EC		EC	EE	EB	EB
3,600 pF	362	ł			_	_		_	_	_										CF	CF	CF	CF				_	_			_	_	EC		_	-	EF		EB
3,900 pF	392	ł			F	- 1 -	- 1		(N	- 1									CF				CF			DN			1	DN	DP	DP		EC	1 -			EB	EB
4,300 pF	432	ł				١,	- 1		(N	1									CF	CF	CF	CF	CF			DN	DN			DN	DP	DP	EC	EC	1 -	EC	EC	EB	
4,700 pF	472	l			- 1 -	- 1 -	- 1			1									CF	CF	CF	CF	CF			DN	1			DN	DP	DP	EC	EC	1 -		EC	EB	EB
5,100 pF	512	l			F	- 1 -			< N									- 1	CF	CF	CF	CF				DN	DN			DN		DP	ED	ED				EB	EB
5,600 pF	562	L			F	_	_	_	(N	_									CF	CF	CF	CF				DN				DN	_	DP	ED	ED	_	_	_	EB	EB
6,200 pF	622	ı							(N										CF	CF	CF	CF				DN	DN	DN		DN	1	DG		EB				EB	EB
6,800 pF	682	ı			- 1 -				(N										CF	CF	CF	CF				DN	DN			DN	1	DG		EB				EB	EB
7,500 pF	752	l			F				()										CF	CF	CF					DN	DN	DN		DN	DG	DG		EB				EB	EB
8,200 pF	822	ı			F				(N										CF	CF	CF					DN	DN	DN		DN	DG	DG	EB	EB		EB	EB	EC	EC
9,100 pF	912	ŀ				(()	_									CF	CF	CF					DN	_	DN		DN			EB	EB		_	EB	EC	EC
10,000 pF	103	l			F	- 1 -			(N	- 1									CF	CF	CF					DN	1	DN		DP			EB	EB			EB	EC	EC
12,000 pF	123	l			F	- 1 -	- 1		(N	- 1									CF	CF	CF					DN	1		DN	DE			EB	EB			EB	ED	ED
15,000 pF	153	l				((N										CF	CF	CF					DN	DN			DG			EB	EB			EB	EF	EF
18,000 pF	183	l			F	- 1 -			()																	DN							EB	EB			EB	EH	EH
22,000 pF	223	L				(_		(N																	DP	DP	DP	DF				EB	EB	_	_	EC	EH	EH
27,000 pF	273				F				()	- 1																DF	DF	DF					EB	EB		EB	EE		
33,000 pF	333				F				()																	DG	DG	DG					EB	EB			EE		
39,000 pF	393				F	١,			()																	DG	DG	DG					EC	EC		EE			
47,000 pF	473				F				(N																	DG	DG	DG					EC	EC			EH		
56,000 pF	563	I			F	_		_	()	_																							ED	ED		_			
68,000 pF	683				F	- 1 -	- 1		(N																								EF	EF					
82,000 pF	823	l			F	- 1 -	- 1		(N	- 1																1							EH	EH		EH			
100,000 pF	104	╀	Rated Voltage (VDC)				1	_				_	1	\downarrow	ᅴ					_	_	<u> </u>	\vdash		_	_	_	_	_	EH	EH	-	+	_	<u> </u>	_			
	Cap	L	Rated Voltage (VDC)					1	_	16	25	20	100	000		250	9	16	25	20	100	200		2	92	25	20	100	200	250	2	9	_	_	100	200	250		
Capacitance	Code	L	Voltage Code Case Size/Series				4	8	4	3	5	1	2	2	Α	8	4	3	5	1	2	A	8	4	3	5	1	2	A	8	4	3	5	1	2	A			
			Ca	ıse	e Si	ze	/Se	rie	28				C	040	2C						C	060	3C					С	080	5C					(120	6C		

Table 1B - Standard Termination Capacitance Range/Selection Waterfall (1210 - 2220 Case Sizes)

			Ca	se S	Siz	e/\$	Sei	ies				С	1210	C				C18	12C	;	C	2220	C
Capacitance	Сар			Vol	tage		, do			8	4	3	5	1	2	A	5	1	2	Α	5	1	2
Capacitance	Code			ited \) (C)		2	92	72°	20	100	200	250 >	20	001	200	250 3	20	100	200
		H				_	•			-	_									ss Co		=	7
			Сар	acita	ance	e To	lera	nce	!											nsion			
1.0 - 9.1 pF*	109 - 919*	В	С	D	_	_		V		FB	FB	FB	FB	FB	FB FB	FB							
10 pF 11 pF	100 110				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB	FB FB							
12 pF	120				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
13 pF	130 150				F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
15 pF 16 pF	160				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
18 pF	180	İ			F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
20 pF	200 220				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
22 pF 24 pF	240				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
27 pF	270				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
30 pF	300 330				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
33 pF 36 pF	360				F	G	J	K	M	FB	FB	FB	FB	FB	FB	FB							
39 pF	390				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
43 pF	430 470				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
47 pF 51 pF	510				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
56 pF	560				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
62 pF	620				F F	G	J	K	M	FB	FB	FB	FB	FB	FB	FB							
68 pF 75 pF	680 750				F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
82 pF	820				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
91 pF	910				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
100 pF 110 pF	101 111				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
120 pF	121				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
130 pF	131				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
150 pF 160 pF	151 161				F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
180 pF	181				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
200 pF	201				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
220 pF	221				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
240 pF 270 pF	241 271				F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
300 pF	301	l			F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
330 pF	331				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB							
360 pF 390 pF	361 391				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB							
430 pF	431				F	G	J	K	M	FB	FB	FB	FB	FB	FB	FB							
470 pF	471				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB	GB			GB			
510 pF	511				F	G	J	K	M	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB			
560 pF 620 pF	561 621				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	GB GB	GB GB	GB GB	GB GB			
680 pF	681				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB			
750 pF	751				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB			
820 pF 910 pF	821 911				F F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	FB FB	GB GB	GB GB	GB GB	GB GB			
1,000 pF	102				F	G	J	K	M	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB			
1,100 pF	112				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB			
1,200 pF	122				F	G	J	K	М	FB	FB	FB	FB	FB	FB	FB	GB	GB	GB	GB			
1,300 pF 1,500 pF	132 152				F	G G	J	K	M	FB FB	FB FB	FB FB	FB FB	FB FB	FC FE	FC FE	GB GB	GB GB	GB GB	GB GB			
1,000 pi	102		Ra	ited \	•		(VI		171	2	19	25	20	9	200	250	50	100	200	250	20	100	200
Capacitance	Cap	\vdash			tage	_	·	-,		8	4	3	5	1	2	A	5	1	2	A A	5	1	2
Capacitance	Code	\vdash	_		_					ا	-					_ ^	⊢ً			_ A			
			Case Size/Series										1210	<u> </u>			<u> </u>	UIB	12C		<u> </u>	2220	L .

Table 1B - Standard Termination Capacitance Range/Selection Waterfall (1210 - 2220 Case Sizes) cont.

	Cap		Ca	se S	Siz	e/\$	Sei	ies	6			C	1210	C				C18	12C		C	2220	C
Capacitance	Code			Vol	tag	e Co	de			8	4	3	5	1	2	A	5	1	2	Α	5	1	2
	oouc		Ra	ted \	Volt	age	(VI	OC)		2	16	25	20	100	200	250	20	100	200	250	20	100	200
			Сар	acit	anc	e To	lera	ince	•									p Thio					
1,600 pF	162				F	G	J	K	М	FB	FB	FB	FB	FB	FE	FE	GB	GB	GB	GB			
1,800 pF	182				F	G	J	K	М	FB	FB	FB	FB	FB	FE	FE	GB	GB	GB	GB			
2,000 pF	202				F	G	J	K	М	FB	FB	FB	FB	FC	FE	FE	GB	GB	GB	GB	l		
2,200 pF	222				F	G	J	K	M	FB	FB	FB	FB	FC	FG	FG	GB	GB	GB	GB			
2,400 pF	242				F	G	J	K	М	FB	FB	FB	FB	FC	FC	FC							
2,700 pF	272	l			F	G	J	K	М	FB	FB	FB	FB	FC	FC	FC	GB	GB	GB	GB			
3,000 pF	302				F	G	J	K	М	FB	FB	FB	FB	FC	FF	FF	İ						
3,300 pF	332	İ			F	G	J	K	М	FB	FB	FB	FB	FF	FF	FF	GB	GB	GB	GB	Ī		
3,600 pF	362	İ			F	G	J	K	М	FB	FB	FB	FB	FF	FF	FF	İ				Ī		
3,900 pF	392				F	G	J	K	М	FB	FB	FB	FB	FF	FF	FF	GB	GB	GB	GB			
4,300 pF	432				F	G	J	K	М	FB	FB	FB	FB	FF	FF	FF							
4,700 pF	472				F	G	J	K	М	FF	FF	FF	FF	FG	FG	FG	GB	GB	GD	GD			
5,100 pF	512	i			F	G	J	K	М	FB	FB	FB	FB	FG	FG	FG	""	02	05	0.5	i		
5,600 pF	562	l			F	G	J	K	М	FB	FB	FB	FB	FG	FG	FG	GB	GB	GH	GH	i		
6,200 pF	622	l			F	G	J	K	М	FB	FB	FB	FB	FG	FB	FB	05	OB	011	011			
6,800 pF	682	l			F	G	J	K	М	FB	FB	FB	FB	FG	FB	FB	GB	GB	GJ	GJ	JE	JE	JB
7,500 pF	752				F	G	J	K	M	FC	FC	FC	FC	FC	FB	FB	GD	GD	GJ	GJ	JL	JL	Jb
8,200 pF	822				F	G	J	K	M	FC	FC	FC	FC	FC	FB	FB	GB	GH	GB	GB	JE	JE	JB
	912				F	G	J	K	M	FE	FE	FE	FE	FE	FB	FB	GB	υп	GB	GB	JE	JE	JD
9,100 pF					F						FF	FF	FF	FF	FB	FB	0.0	GH	OD	GB	1.5	15	ın
10,000 pF	103				-	G	J	K	M	FF							GB		GB GB		JE	JE	JB
12,000 pF	123				F	G	J	K	M	FB	FB	FB	FB	FB	FB	FB	GB	GG		GB	JE	JE	JB
15,000 pF	153				F	G	J	K	М	FB	FB	FB	FB	FB	FC	FC	GB	GB	GB	GB	JE	JE	JB
18,000 pF	183				F	G	J	K	M	FB	FB	FB	FB	FB	FC	FC	GB	GB	GB	GB	JE	JE	JB
22,000 pF	223				F	G	J	K	М	FB	FB	FB	FB	FB	FF	FF	GB	GB	GB	GB	JE	JB	JB
27,000 pF	273				F	G	J	K	М	FB	FB	FB	FB	FB	FG	FG	GB	GB	GB	GB	JE	JB	JB
33,000 pF	333				F	G	J	K	М	FB	FB	FB	FB	FB	FH	FH	GB	GB	GB	GB	JB	JB	JB
39,000 pF	393				F	G	J	K	M	FB	FB	FB	FB	FE	FH	FH	GB	GB	GB	GB	JB	JB	JB
47,000 pF	473				F	G	J	K	M	FB	FB	FB	FB	FE	FJ	FJ	GB	GB	GD	GD	JB	JB	JB
56,000 pF	563				F	G	J	K	M	FB	FB	FB	FB	FF			GB	GB	GD	GD	JB	JB	JB
68,000 pF	683				F	G	J	K	M	FB	FB	FB	FC	FG			GB	GB	GK	GK	JB	JB	JB
82,000 pF	823				F	G	J	K	М	FC	FC	FC	FF	FH			GB	GB	GM	GM	JB	JB	JB
100,000 pF	104				F	G	J	K	М	FE	FE	FE	FG	FM			GB	GD	GM	GM	JB	JB	JD
120,000 pF	124	l			F	G	J	K	М	FG	FG	FG	FH				GB	GH			JB	JB	JD
150,000 pF	154	l			F	G	J	K	М	FH	FH	FH	FM				GD	GN			JB	JB	JG
180,000 pF	184	İ			F	G	J	K	М	FJ	FJ	FJ					GH				JB	JD	JG
220,000 pF	224	ĺ			F	G	J	K	М	l							GK				JB	JD	JL
270,000 pF	274				F	G	J	K	М	l							l				JB	JF	
330,000 pF	334				F	G	J	K	М												JD	JG	
390,000 pF	394				F	G	J	K	М												JG		
470,000 pF	474				F	G	J	K	М												JG		
		Г	Ra	ted '	Volt	age	(VI	OC)		2	9	25	20	9	200	250	20	9	200	250	20	100	200
Capacitance	Cap Code			Vol	tag	e Co	de			8	4	3	5	1	2	A	5	1	2	A	5	1	2
	Coue		Case Size/Series									C	1210	С				C18	12C		С	2220	С

Table 1C - Flexible Termination Capacitance Range/Selection Waterfall (0603 - 1206 Case Sizes)

	Сар		Cas	se	Siz	:e/\$	Ser	ies				С	060	3C					C	080	5C					С	1206	5C		
Capacitance	Code			Vo	ltag	e Co	ode			8	4	3	5	1	2	A	8	4	3	5	1	2	A	8	4	3	5	1	2	A
	Ooue		Ra	ted	Volt	age	(VD	C)		10	16	25	20	100	200	250	19	16	25	20	100	200	250	10	16	25	20	100	200	250
			Cap	acit	anc	e To	lera	nce							F			railab e 2 fo							!S					
0.50 & 0.75 pF	508 & 758	В	С	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	1						
0.75 pF 1.0 - 9.1 pF*	758 109 - 919*	B B	C	D D						CJ	CJ	CJ	CJ	Cl	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
1.0 5.1 pr	119	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
1.2 pF	129	В	С	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
1.3 pF 1.5 pF	139 159	B B	C	D D						CJ	CJ	CJ	Cl	Cl	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
1.6 pF	169	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
1.8 pF	189	В	С	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
2.0 pF	209	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
2.2 pF 2.4 pF	229 249	B B	C	D D						CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
2.7 pF	279	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
3.0 pF	309	В	С	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
3.3 pF	339 369	B	C	D						CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
3.6 pF 3.9 pF	399	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ EQ	EQ	EQ	EQ	EQ	EQ	EQ
4.3 pF	439	В	С	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
4.7 pF	479	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
5.1 pF 5.6 pF	519 569	B	C	D						CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
6.2 pF	629	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
6.8 pF	689	В	С	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
7.5 pF 8.2 pF	759	B B	C	D D						CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR	DR DR	DR DR	DR	DR	DR DR	DR DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ EQ
9.1 pF	829 919	В	C	D						CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR DR	DR	DR	DR DR	DR DR	DR	DR	EQ EQ	EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ
10 pF	100	-	-	_	F	G	J	K	м	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
11 pF	110				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
12 pF	120 130	l			F	G	J	K K	M M	CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ	EQ EQ	EQ EQ	EQ	EQ EQ	EQ EQ	EQ EQ
13 pF 15 pF	150				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ EQ	EQ	EQ	EQ EQ	EQ	EQ	EQ
16 pF	160				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
18 pF	180				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
20 pF	200				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
22 pF 24 pF	220 240				F	G	J	K K	M M	CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
27 pF	270				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
30 pF	300	İ			F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
33 pF	330				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
36 pF 39 pF	360 390				F	G	J	K	M	CJ	CJ	CJ	Cl	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ	EQ EQ	EQ	EQ	EQ	EQ	EQ EQ
43 pF	430				F	G	J	K K	M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ EQ	EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ
47 pF	470				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
51 pF	510				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
56 pF	560				F	G	J	K	M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
62 pF 68 pF	620 680				F	G	J	K K	M M	CJ	CJ	Cl	CJ	Cl	CJ	C1 C1	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
75 pF	750				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
82 pF	820				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
91 pF	910				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
100 pF 110 pF	101 111				F	G	J	K K	M M	CJ	CJ	CJ	Cl	Cl	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
120 pF	121				F	G	J	K	M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
130 pF	131				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
150 pF	151				F	G	J	K	М	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ						
160 pF	161	\vdash		ر د ده	F	G	J	K	М	CJ	CJ •	CJ	CJ	CJ	CJ	CJ	DR	DR •	DR	DR	DR	DR	DR	EQ	EQ •	EQ	EQ	EQ	EQ	EQ
Composition	Cap	\vdash	ка			Ť	(VD	C)	\dashv	10	19	25	20	100	200	250	10	9	25	20	100	200	250	9	19	25	20	100	200	250
Capacitance	Code	⊢	_		ltag				\dashv	8	4	3	5	1	2	Α	8	4	3	5	1	2	Α	8	4	3	5	1	2	A
	<u> </u>		C	ase	Siz	e/S	erie	28					060	SC						0805	C						1206	C		

Table 1C – Flexible Termination Capacitance Range/Selection Waterfall (0603 - 1206 Case Sizes) cont.

	0	Ca	ase	Siz	e/S	Seri	es			C	060	3C					C	080	5C					С	1206	iC		
Capacitance	Cap Code		Vo	ltage	e Co	de		8	4	3	5	1	2	A	8	4	3	5	1	2	A	8	4	3	5	1	2	A
	Code	R	ated	Volt	age	(VDC	;)	10	16	25	50	100	200	250	10	16	25	20	100	200	250	19	16	25	20	100	200	250
		Ca	pacit	ance	е То	leran	ce						F							'hickı ss Diı			S					
180 pF	181			F	G	- 1	КМ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
200 pF 220 pF	201 221			F	G G	- 1	K M K M	CJ	CJ	CJ	CJ	Cl	CJ	Cl	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
240 pF	241			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
270 pF	271			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
300 pF	301			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
330 pF	331			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
360 pF 390 pF	361 391			F	G G		K M K M	CJ	CJ	CJ	CJ	CJ	Cl	CJ	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
430 pF	431			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
470 pF	471	İ		F	G	- 1	КМ	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DD	DD	EQ	EQ	EQ	EQ	EQ	EQ	EQ
510 pF	511			F	G	- 1	K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
560 pF 620 pF	561 621			F	G G	- 1	K M K M	Cl	CJ	Cl	Cl	CJ	CJ	Cl	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
680 pF	681			F	G	-	K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
750 pF	751			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
820 pF	821			F	G		K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
910 pF	911			F	G	-	K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR	DR	DR	DR	DD	DD	DD	EQ	EQ	EQ	EQ	EQ	EQ	EQ
1,000 pF 1,100 pF	102 112			F	G G		K M K M	CJ	CJ	CJ	CJ	CJ	CJ	CJ	DR DR	DR DR	DR DR	DR DR	DD DR	DD DR	DD DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ
1,200 pF	122			F	G	- 1	K M	CJ	CJ	CJ	CJ	CJ	CH	CH	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	EQ	EQ	EQ
1,300 pF	132			F	G	J	КМ	CJ	CJ	CJ	CJ	CJ	СН	СН	DD	DD	DD	DD	DD	DR	DR	EQ	EQ	EQ	EQ	ER	ER	ER
1,500 pF	152			F	G	- 1	K M	CJ	CJ	CJ	CJ	CJ	CH	CH	DD	DD	DD	DD	DD	DR	DR	EQ	EQ	EQ	EQ	ES	ER	ER
1,600 pF 1,800 pF	162 182			F	G	-	K M K M	Cl	CJ	Cl	Cl	CJ	CH	CH	DD DD	DD DD	DD DD	DD DD	DD DD	DR DR	DR DR	EQ EQ	EQ EQ	EQ EQ	EQ EQ	ES ES	ES ES	ES ES
2,000 pF	202			F	G		K M	CJ	CJ	CJ	CJ	CJ	CH	CH	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	ES	ES	ES
2,200 pF	222			F	G		K M	CJ	CJ	CJ	CJ	CJ	СН	СН	DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	ET	ET	ET
2,400 pF	242			F	G		K M	CJ	CJ	CJ	CJ	CJ			DR	DR	DR	DR	DR	DR	DR	EQ	EQ	EQ	EQ	ER	ER	ER
2,700 pF 3,000 pF	272 302			F	G G		K M K M	CJ	CJ	CJ	CJ	CJ			DR DD	DR DD	DR DR	DR DR	DR DR	DR DR	DR DR	EQ ER	EQ ER	EQ ER	EQ ER	ER ER	ER EQ	ER EQ
3,300 pF	332			F	G	- 1	K M	CJ	CJ	CJ	CJ	CJ			DD	DD	DR	DR	DR	DR	DR	ER	ER	ER	ER	ET	EQ	EQ
3,600 pF	362			F	G	- 1	K M	CJ	CJ	CJ	CJ	CJ			DD	DD	DR	DR	DR	DD	DD	ER	ER	ER	ER	ET	EQ	EQ
3,900 pF	392			F	G	- 1	K M	CJ	CJ	CJ	CJ	CJ			DS	DS	DR	DR	DR	DD	DD	ER	ER	ER	ER	EF	EQ	EQ
4,300 pF	432			F	G	-	K M K M	CJ	CJ	CJ	CJ	CJ			DS DS	DS DS	DR DR	DR	DR DR	DD DD	DD DD	ER ER	ER ER	ER ER	ER ER	ER ER	EQ EQ	EQ EQ
4,700 pF 5.100 pF	472 512			F	G		K M	CJ	CJ	CJ	CJ	63			DS	DS	DR	DR DR	DR	DD	DD	ES	ES	ES	ES	ES	EQ	EQ
5,600 pF	562			F	G		K M	CJ	CJ	CJ	CJ				DR	DR	DR	DR	DR	DD	DD	ES	ES	ES	ES	ES	EQ	EQ
6,200 pF	622			F	G		КМ	CJ	CJ	CJ	CJ				DR	DR	DR	DR	DR	DG	DG	EQ	EQ	EQ	EQ	EQ	EQ	EQ
6,800 pF	682			F	G		K M	CJ	CJ	CJ	CJ				DR	DR DR	DR	DR	DR DR	DG	DG DG	EQ	EQ	EQ	EQ	EQ	EQ	EQ EQ
7,500 pF 8,200 pF	752 822			F	G G		K M K M	C1	CJ	CJ					DR DR	DR DR	DR DR	DR DR	DR DR	DG DG	DG	EQ ER	EQ ER	EQ EQ	EQ EQ	EQ EQ	EQ ER	ER
9,100 pF	912			F	G		K M	CJ	CJ	CJ					DR	DR	DR	DR	DR	-	-0	ER	ER	EQ	EQ	EQ	ER	ER
10,000 pF	103			F	G	- 1	КМ	CJ	CJ	CJ					DR	DR	DR	DR	DD			EQ	EQ	EQ	EQ	EQ	ER	ER
12,000 pF	123			F	G		K M	Cl	CJ	CJ					DR	DR	DR	DR	DS			EQ	EQ	EQ	EQ	EQ	ES EF	ES EF
15,000 pF 18,000 pF	153 183			F	G G		K M K M	UJ	CJ	CJ					DR DR	DR DR	DR DR	DD DD	DG			EQ EQ	EQ EQ	EQ EQ	EQ EQ	EQ EQ	EH	EH
22,000 pF	223			F	G		K M								DD	DD	DD	DF				EQ	EQ	EQ	EQ	ER	EH	EH
27,000 pF	273			F	G		КМ								DF	DF	DF					EQ	EQ	EQ	EQ	ET		
33,000 pF	333			F	G		K M								DG	DG	DG					EQ	EQ	EQ	EQ	ET		
39,000 pF 47,000 pF	393 473			F	G G		K M K M								DG DG	DG DG	DG DG					ER ER	ER ER	ER ER	ET ET	EH EH		
56,000 pF	563			F	G		K M								20	20	20					ES	ES	ES	EF			
68,000 pF	683			F	G	J	КМ															EF	EF	EF	EH			
82,000 pF	823			F	G		K M															EH	EH	EH	EH			
100,000 pF	104			F	G		<u>К М</u>	6	vo.	LC.	6	0	0		0	9	22	6	0	0		EH	EH 9	EH		0	0	9
Capacitance	Сар	⊢ R	ated	Volt Itage	Ť	<u> </u>	•)	8	<u>9</u> 4	25	<u>9</u>	9 1	200	▶ 250	8	9 4	25	<u>S</u>	001	200	▶ 250	8	<u>9</u> 4	22 8	<u>S</u>	<u>2</u>	200	▶ 250
Capacitance	Code	 ,	Case	<u> </u>				├ ゜	4		0603			A	۰	-	ļ	0805			Α.	⊦	4	_	1206			Α.
	L	<u> </u>	Jase	312	e/ 3	ent					0003							0000						·	1200			

Table 1D - Flexible Termination Capacitance Range/Selection Waterfall (1210 - 2220 Case Sizes)

	0		Ca	se	Siz	e/\$	Ser	ies				C	1210	C				C18	12C		C	2220	C
Capacitance	Cap Code			Vo	ltag	e Co	ode			8	4	3	5	1	2	A	5	1	2	A	5	1	2
	Coue		Ra	ted	Volt	age	(VI	OC)		10	16	25	50	100	200	250	50	100	200	250	50	100	200
			Сар	acit	tanc	е То	lera	ince												ss Co			
1.0 - 9.1 pF*	109 - 919*	В	С	D						FN	FN	FN	FN	FN	FN	FN			<u> </u>	10.01	Ĭ		
1.1 pF	119	В	C	D						FN	FN	FN	FN	FN	FN	FN							
1.2 pF	129 139	B B	C	D D						FN FN	FN FN	FN	FN	FN	FN FN	FN FN							
1.3 pF 1.5 pF	159	В	C	D						FN	FN	FN FN	FN FN	FN FN	FN	FN							
1.6 pF	169	В	C	D						FN	FN	FN	FN	FN	FN	FN							
1.8 pF	189	В	C	D						FN	FN	FN	FN	FN	FN	FN	i				l		
2.0 pF	209	В	C	D						FN	FN	FN	FN	FN	FN	FN					İ		
2.2 pF	229	В	C	D						FN	FN	FN	FN	FN	FN	FN	İ				İ		
2.4 pF	249	В	С	D						FN	FN	FN	FN	FN	FN	FN							
2.7 pF	279	В	С	D						FN	FN	FN	FN	FN	FN	FN							
3.0 pF	309	В	С	D						FN	FN	FN	FN	FN	FN	FN							
3.3 pF	339	В	C	D						FN	FN	FN	FN	FN	FN	FN							
3.6 pF	369	В	C	D						FN FN	FN FN	FN FN	FN	FN	FN	FN							
3.9 pF 4.3 pF	399 439	B	C	D						FN	FN	FN	FN FN	FN FN	FN FN	FN FN							
4.5 pF 4.7 pF	479	В	C	D						FN	FN	FN	FN	FN	FN	FN							
5.1 pF	519	В	C	D						FN	FN	FN	FN	FN	FN	FN	l				l		
5.6 pF	569	В	C	D						FN	FN	FN	FN	FN	FN	FN	i				i		
6.2 pF	629	В	C	D						FN	FN	FN	FN	FN	FN	FN	İ				İ		
6.8 pF	689	В	С	D						FN	FN	FN	FN	FN	FN	FN							
7.5 pF	759	В	C	D						FN	FN	FN	FN	FN	FN	FN							
8.2 pF	829	В	C	D						FN	FN	FN	FN	FN	FN	FN							
9.1 pF	919	В	С	D	_		١.	.,		FN	FN	FN	FN	FN	FN	FN							
10 pF	100				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
11 pF	110				F	G	J	K	M	FN FN	FN FN	FN	FN	FN	FN	FN							
12 pF	120 130				F	G G	J	K	M	FN	FN	FN FN	FN FN	FN FN	FN FN	FN FN							
13 pF 15 pF	150	l			F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN					1		
16 pF	160	l			F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN					1		
18 pF	180				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
20 pF	200				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
22 pF	220				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
24 pF	240				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
27 pF	270				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
30 pF	300				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
33 pF	330	l			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	1				1		
36 pF	360	l			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
39 pF	390	l			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	1				1		
43 pF	430				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
47 pF	470				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
51 pF	510				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
56 pF	560				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
	Cap	L	Ra	ted	Volt	age	(VI	C)		10	92	25	20	100	200	250	20	100	200	250	20	100	200
Capacitance	Code	L		Vo	ltag	e Co	de			8	4	3	5	1	2	A	5	1	2	A	5	1	2
			C	ase	Siz	e/S	eri	es					1210	С				C18	12C		C	2220	С

Table 1D - Flexible Termination Capacitance Range/Selection Waterfall (1210 - 2220 Case Sizes) cont.

	Con	(Cas	se S	iz	e/\$	Sei	ies	5			C	1210	C				C18	12C		C	2220	C
Capacitance	Cap			Volt	age	Co	ode			8	4	3	5	1	2	Α	5	1	2	Α	5	1	2
	Code		Ra	ted V	olta	age	(VI	OC)		2	9	25	20	2	200	250	20	8	200	220	20	2	200
		Ι.	_	<u> </u>		÷	<u>. </u>						duct	•			l d Chi	Thie		s Co	des		_~
		<u>L</u> '	Сар	acita	nce	10	iera	ance	:			S	ee Ta	ble 2	for C	hip T	hick	ness	Dime	nsior	ıs		
62 pF	620				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
68 pF	680 750				F F	G G	J	K	M	FN FN	FN FN	FN FN	FN FN	FN FN	FN FN	FN FN							
75 pF 82 pF	820				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
82 рг 91 pF	910				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
100 pF	101				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
110 pF	111				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
120 pF	121				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
130 pF	131				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
150 pF	151				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
160 pF	161				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
180 pF	181				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
200 pF	201				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
220 pF	221				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN	l						
240 pF	241				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
270 pF	271				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
300 pF	301				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
330 pF	331				F	G	J	K	M	FN	FN	FN	FN	FN	FN	FN							
360 pF	361	i			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
390 pF	391				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
430 pF	431	i			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN							
470 pF	471	i			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
510 pF	511				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
560 pF	561	i I			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB	İ		
620 pF	621	i I			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB	İ		
680 pF	681	i i			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB	İ		
750 pF	751	i I			F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB	İ		
820 pF	821				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
910 pF	911				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
1,000 pF	102				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
1,100 pF	112				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
1,200 pF	122				F	G	J	K	М	FN	FN	FN	FN	FN	FN	FN	GB	GB	GB	GB			
1,300 pF	132				F	G	J	K	М	FN	FN	FN	FN	FN	FQ	FQ	GB	GB	GB	GB			
1,500 pF	152				F	G	J	K	М	FN	FN	FN	FN	FN	FE	FE	GB	GB	GB	GB			
1,600 pF	162				F	G	J	K	М	FN	FN	FN	FN	FN	FE	FE	GB	GB	GB	GB			
1,800 pF	182				F	G	J	K	М	FN	FN	FN	FN	FN	FE	FE	GB	GB	GB	GB			
2,000 pF	202				F	G	J	K	М	FN	FN	FN	FN	FQ	FE	FE	GB	GB	GB	GB			
2,200 pF	222				F	G	J	K	М	FN	FN	FN	FN	FQ	FZ	FZ	GB	GB	GB	GB			
2,400 pF	242				F	G	J	K	М	FN	FN	FN	FN	FQ	FQ	FQ							
2,700 pF	272				F	G	J	K	М	FN	FN	FN	FN	FQ	FQ	FQ	GB	GB	GB	GB			
3,000 pF	302				F	G	J	K	М	FN	FN	FN	FN	FQ	FA	FA							
3,300 pF	332				F	G	J	K	М	FN	FN	FN	FN	FA	FA	FA	GB	GB	GB	GB			_
	Com	L	Ra	ted V	olta	age	(VI	OC)		10	16	25	20	100	200	250	20	100	200	250	20	100	200
Capacitance	Cap Code			Volt	age	Co	de			8	4	3	5	1	2	A	5	1	2	A	5	1	2
			Ca	ase S	Siz	e/S	eri	es				C	1210	С				C18	12C		C	2220	С

Table 1D - Flexible Termination Capacitance Range/Selection Waterfall (1210 - 2220 Case Sizes) cont.

	Con		Cas	se Si	ze/	Se	rie	S			С	1210	C				C18	12C		C	2220	C
Capacitance	Cap Code			Volta	ge C	ode			8	4	3	5	1	2	A	5	1	2	A	5	1	2
	Coue		Rat	ted Vo	ltag	e (V	DC)		10	16	25	20	100	200	250	20	100	200	250	50	100	200
			Can	acitan	ra T	اماما	ance				Pro	duct	Avai			d Chi	p Thi	cknes		des	-	
			Сар	acitai	ce i	oiei	_	_								hick	ness	<u>Dime</u>	nsior	s		
3,600 pF	362			F		J		M	FN	FN	FN	FN	FA	FA	FA							
3,900 pF	392			F		J	K	M	FN	FN	FN	FN	FA	FA	FA	GB	GB	GB	GB	•		
4,300 pF	432			F	1 -	J		M	FN	FN	FN	FN	FA	FA	FA	l				•		
4,700 pF	472			F		J		M	FA	FA	FA	FA	FZ	FZ	FZ	GB	GB	GD	GD			
5,100 pF	512			F		J	K	M	FN	FN	FN	FN	FZ	FZ	FZ							
5,600 pF	562			F	G	J	K	M	FN	FN	FN	FN	FZ	FZ	FZ	GB	GB	GH	GH			
6,200 pF	622			F	G	J	K	М	FN	FN	FN	FN	FZ	FN	FN							
6,800 pF	682			F	G	J	K	M	FN	FN	FN	FN	FZ	FN	FN	GB	GB	GJ	GJ	JE	JE	JB
7,500 pF	752			F		J	K	М	FQ	FQ	FQ	FQ	FQ	FN	FN							
8,200 pF	822			F		J	K	М	FO	FO	FO	FO	FO	FN	FN	GB	GH	GB	GB	JE	JE	JB
9,100 pF	912			F	-	J		М	FE	FE	FE	FE	FE	FN	FN							
10,000 pF	103	l		F		J		М	FA	FA	FA	FA	FA	FN	FN	GB	GH	GB	GB	JE	JE	JB
12,000 pF	123	l		. F		J		М	FN	FN	FN	FN	FN	FN	FN	GB	GG	GB	GB	JE	JE	JB
15,000 pF	153			i i	1 -	J	1	М	FN	FN	FN	FN	FN	FO	FO	GB	GB	GB	GB	JE	JE	JB
18,000 pF	183	l		ļ.	1 -	J		M	FN	FN	FN	FN	FN	FO	FO	GB	GB	GB	GB	JE	JE	JB
22,000 pF	223			F		J	_	M	FN	FN	FN	FN	FN	FA	FA	GB	GB	GB	GB	JE	JB	JB
27,000 pF 27,000 pF	273			F		J		M	FN	FN	FN	FN	FN	FZ	FZ	GB	GB	GB	GB	JE	JB	JB
/ · · · · I·					1 -	1 -												GB				
33,000 pF	333			F		J		M	FN	FN	FN	FN	FN	FU	FU	GB	GB		GB	JB	JB	JB
39,000 pF	393			F		J		М	FN	FN	FN	FN	FE	FU	FU	GB	GB	GB	GB	JB	JB	JB
47,000 pF	473			F		J	_	M	FN	FN	FN	FN	FE	FJ	FJ	GB	GB	GD	GD	JB	JB	JB
56,000 pF	563			F		J		М	FN	FN	FN	FN	FA			GB	GB	GD	GD	JB	JB	JB
68,000 pF	683			F		J	1	M	FN	FN	FN	FQ	FZ			GB	GB	GK	GK	JB	JB	JB
82,000 pF	823			F	1 -	J		M	FQ	FQ	FQ	FA	FU			GB	GB	GM	GM	JB	JB	JB
100,000 pF	104			F	1 -	J		M	FE	FE	FE	FZ	FM			GB	GD	GM	GM	JB	JB	JD
120,000 pF	124			F		J		M	FZ	FZ	FZ	FU				GB	GH			JB	JB	JD
150,000 pF	154			F		J		M	FU	FU	FU	FM				GD	GN			JB	JB	JG
180,000 pF	184			F	G	J	K	M	FJ	FJ	FJ					GH				JB	JD	JG
220,000 pF	224			F	G	J	K	M								GK				JB	JD	JL
270,000 pF	274			F	G	J	K	M												JB	JF	
330,000 pF	334			F	G	J	K	М												JD	JG	
390,000 pF	394			F		J		М												JG		
470,000 pF	474	ĺ		F	G	J	K	М	l							İ				JG		
· ·			Rat	ted Vo	ltag	e (V	DC)		10	16	25	22	100	200	250	20	100	200	250	20	100	200
Capacitance	Cap Code			Volta	ge C	ode			8	4	3	5	1	2	A	5	1	2	Α	5	1	2
			Case Size/Series								1210	С				C18	12C		C	2220	С	

Performance and Reliability: Test Methods and Conditions

Test	Reference	Test Condition	Limits
Visual and Mechanical	KEMET Internal	No defects that may affect performance (10X)	Dimensions according KEMET Spec Sheet
Capacitance (Cap)	KEMET Internal	C ≤ 1,000 pF Frequency: 1 MHz \pm 100 kHz Voltage*:1.0 V $_{rms}$ \pm 0.2 V C > 1,000 pF Frequency: 1 kHz \pm 50 Hz Voltage: 1.0 V $_{rms}$ \pm 0.2 V * See part number specification sheet for voltage	Within Tolerance
Dissipation Factor (DF)	KEMET Internal	C ≤ 1,000 pF Frequency: 1 MHz \pm 100 kHz Voltage*:1.0 V $_{rms}$ \pm 0.2 V C > 1,000 pF Frequency: 1 kHz \pm 50 Hz Voltage: 1.0 V $_{rms}$ \pm 0.2 V * See part number specification sheet for voltage"	Within Specification Dissipation factor (DF) maximum limit at 25°C = 0.1%
			Within Specification
Insulation Resistance (IR)	KEMET Internal	Rated voltage applied for 120 ±5 seconds at 25°C	To obtain IR limit, divide $M\Omega\text{-}\mu\text{F}$ value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits.
			1,000 megaohm microfarads or 100 G Ω .
Temperature Coefficient of Capacitance (TCC)	KEMET Internal	Capacitance change with reference to +25°C and 0 VDC applied. * See part number specification sheet for voltage Step Temperature (°C)	Within Specifcation ±30 ppm/°C *Except :1210 Cap Code >= 682; 1812 Cap Code >= 471;
Dielectric Withstanding Voltage (DWV)	KEMET Internal	250% of rated voltage (5 ±1 seconds and charge/discharge not exceeding 50 mA)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit Withstand test voltage without insulation breakdown or damage.
Aging Rate (Maximum % Capacitance Loss/Decade Hour)	KEMET Internal	Maximum % capacitance loss/decade hour	0% Loss/Decade Hour

Performance and Reliability: Test Methods and Conditions cont.

Test	Reference	Test Condition	Limits
Terminal Strength	KEMET Internal	Shear stress test per specific case size, Time: 60±1 seconds Case Size Force 0402 3N 0603 5N 0805 9N ≥1206 18N	No evidence of mechanical damage
Board Flex	AEC-Q200-005	3.0 mm minimum Test time: 60± 5 seconds Ramp time: 1 mm/second (Unit : mm)	No evidence of mechanical damage
Solderability	J-STD-002	Condition: 4 hours ± 15 minimum at 155°C dry bake apply all methods Test 245 ± 5°C (SnPb & Pb-Free)	Visual Inspection. 95% coverage on termination. No leaching
Temperature Cycling	JESD22 Method JA-104	1,000 cycles (-55°C to +150°C) 2 - 3 cycles per hour Soak Time 1 or 5 minutes	Measurement at 24 hours ±4 hours after test conclusion. Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Biased Humidity	MIL-STD-202 Method 103	Load Humidity: 1,000 hours 85°C/85% RH and 200 VDC maximum. Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V.	Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift IR: 10% of Initial Limit DF Limits Maximum: 0.5%
Moisture Resistance	MIL-STD-202 Method 106	Number of cycles required 10, 24 hours per cycle. Steps 7a and 7b not required	Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift IR: 10% of Initial Limit DF Limits Maximum: 0.5%
Thermal Shock	MIL-STD-202 Method 107	Number of cycles required 5, (-55°C to 150°C) Dwell time 15 minutes.	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
High Temperature Life	MIL-STD-202	1,000 hours at 150°C with 2 X rated voltage applied	Within Post Environmental Limits Cap: ±0.3% or ±0.25 pF shift
Storage Life	Method 108	1,000 hours at 150°C, Unpowered	IR: 10% of Initial Limit DF: 0.5%

Performance and Reliability: Test Methods and Conditions cont.

Test	Reference	Test Condition	Limits
Vibration	MIL-STD-202 Method 204	5 g's for 20 minutes, 12 cycles each of 3 orientations. Test from 10 – 2,000 Hz	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Mechanical Shock	MIL-STD-202 Method 213	1,500 g's 0.5 ms Half-sine, Velocity Change 15.4 feet/second (Condition F)	Cap: Initial Limit DF: Initial Limit IR: Initial Limit
Resistance to Solvents	MIL-STD-202 Method 215	Add Aqueous wash chemical OKEMCLEAN (A 6% concentrated Oakite cleaner) or equivalent. Do not use banned solvents.	Visual Inspection 10X Readable marking, no decoloration or stains. No physical damage.

Table 2A - Standard Termination Chip Thickness/Tape & Reel Packaging Quantities

Thickness	Case	Thickness ±	Paper Q	uantity ¹	Plastic (Quantity	
Code	Size ¹	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel	
BB	0402	0.50 ± 0.05	10,000	50,000	0	0	
BD	0402	0.55 ± 0.05	10,000	50,000	0	0	
CF	0603	0.80 ± 0.07	4,000	15,000	0	0	
CH	0603	0.85 ± 0.07	4,000	10,000	0	0	
DN	0805	0.78 ± 0.10	4,000	15,000	0	0	
DP	0805	0.90 ± 0.10	4,000	15,000	0	0	
DE	0805	1.00 ± 0.10	0	0	2,500	10,000	
DF	0805	1.10 ± 0.10	0	0	2,500	10,000	
DG	0805	1.25 ± 0.15	0	0	2,500	10,000	
EB	1206	0.78 ± 0.10	0	0	4,000	10,000	
EC	1206	0.90 ± 0.10	0	0	4,000	10,000	
ED	1206	1.00 ± 0.10	0	0	2,500	10,000	
EE	1206	1.10 ± 0.10	0	0	2,500	10,000	
EF	1206	1.20 ± 0.15	0	0	2,500	10,000	
EH	1206	1.60 ± 0.20	0	0	2,000	8,000	
FB	1210	0.78 ± 0.10	0	0	4,000	10,000	
FC	1210	0.90 ± 0.10	0	0	4,000	10,000	
FE	1210	1.00 ± 0.10	0	0	2,500	10,000	
FF	1210	1.10 ± 0.10	0	0	2,500	10,000	
FG	1210	1.25 ± 0.15	0	0	2,500	10,000	
FH	1210	1.55 ± 0.15	0	0	2,000	8,000	
FM	1210	1.70 ± 0.20	0	0	2,000	8,000	
FJ	1210	1.85 ± 0.20	0	0	2,000	8,000	
GB	1812	1.00 ± 0.10	0	0	1,000	4,000	
GD	1812	1.25 ± 0.15	0	0	1,000	4,000	
GH	1812	1.40 ± 0.15	0	0	1,000	4,000	
GG	1812	1.55 ± 0.10	0	0	1,000	4,000	
GK	1812	1.60 ± 0.20	0	0	1,000	4,000	
GJ	1812	1.70 ± 0.15	0	0	1,000	4,000	
GN	1812	1.70 ± 0.20	0	0	1,000	4,000	
GM	1812	2.00 ± 0.20	0	0	500	2,000	
JB	2220	1.00 ± 0.15	0	0	1,000	4,000	
JD	2220	1.30 ± 0.15	0	0	1,000	4,000	
JE	2220	1.40 ± 0.15	0	0	1,000	4,000	
JF	2220	1.50 ± 0.15	0	0	1,000	4,000	
JG 	2220	1.70 ± 0.15	0	0	1,000	4,000	
JL	2220	2.00 ± 0.20	0	0	500	2,000	
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel	
Code	Size ¹	Range (mm)	Paper Q	uantity ¹	Plastic	Quantity	

 $[\]label{prop:package} \textit{Package quantity based on finished chip thickness specifications}.$

¹ fordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

Table 2B - Flexible Termination Chip Thickness/Tape & Reel Packaging Quantities

Thickness	Case	Thickness ±	Paper Q	uantity ¹	Plastic (Quantity
Code	Size ¹	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel
CJ	0603	0.80 ± 0.15	4,000	15,000	0	0
CH	0603	0.85 ± 0.07	4,000	10,000	0	0
DR	0805	0.78 ± 0.20	0	0	4,000	10,000
DD	0805	0.90 ± 0.10	0	0	4,000	10,000
DS	0805	1.00 ± 0.20	0	0	2,500	10,000
DF	0805	1.10 ± 0.10	0	0	2,500	10,000
DG	0805	1.25 ± 0.15	0	0	2,500	10,000
EQ	1206	0.78 ± 0.20	0	0	4,000	10,000
ER	1206	0.90 ± 0.20	0	0	4,000	10,000
ES	1206	1.00 ± 0.20	0	0	2,500	10,000
ET	1206	1.10 ± 0.20	0	0	2,500	10,000
EF	1206	1.20 ± 0.15	0	0	2,500	10,000
EH	1206	1.60 ± 0.20	0	0	2,000	8,000
FN	1210	0.78 ± 0.20	0	0	4,000	10,000
FQ	1210	0.90 ± 0.20	0	0	4,000	10,000
FE	1210	1.00 ± 0.10	0	0	2,500	10,000
FA	1210	1.10 ± 0.15	0	0	2,500	10,000
FZ	1210	1.25 ± 0.20	0	0	2,500	10,000
FU	1210	1.55 ± 0.20	0	0	2,000	8,000
FM	1210	1.70 ± 0.20	0	0	2,000	8,000
FJ	1210	1.85 ± 0.20	0	0	2,000	8,000
GB	1812	1.00 ± 0.10	0	0	1,000	4,000
GD	1812	1.25 ± 0.15	0	0	1,000	4,000
GH	1812	1.40 ± 0.15	0	0	1,000	4,000
GG	1812	1.55 ± 0.10	0	0	1,000	4,000
GK	1812	1.60 ± 0.20	0	0	1,000	4,000
GJ	1812	1.70 ± 0.15	0	0	1,000	4,000
GN	1812	1.70 ± 0.20	0	0	1,000	4,000
GM	1812	2.00 ± 0.20	0	0	500	2,000
JB	2220	1.00 ± 0.15	0	0	1,000	4,000
JD	2220	1.30 ± 0.15	0	0	1,000	4,000
JE	2220	1.40 ± 0.15	0	0	1,000	4,000
JF	2220	1.50 ± 0.15	0	0	1,000	4,000
JG	2220	1.70 ± 0.15	0	0	1,000	4,000
JL	2220	2.00 ± 0.20	0	0	500	2,000
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel
Code	Size ¹	Range (mm)	Paper Q	uantity ¹	Plastic (Quantity

Package quantity based on finished chip thickness specifications.

If ordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

Table 2C - Bulk Packaging Quantities

Dooksoo	ing Type	Loose P	ackaging					
Раскад	ing Type	Bulk Bag	g (default)					
Packagi	ng C-Spec ¹	N	/A ²					
Cas	e Size	Packaging Quantities (pieces/unit packag						
EIA (in)	Metric (mm)	Minimum	Maximum					
0402	1005							
0603	1608							
0805	2012		50,000					
1206	3216							
1210	3225	1						
1808	4520	'						
1812	4532							
1825	4564		20,000					
2220	5650							
2225	5664							

¹ The "Packaging C-Spec" is a 4 to 8 digit code which identifies the packaging type and/or product grade. When ordering, the proper code must be included in the 15th through 22nd character positions of the ordering code. See "Ordering Information" section of this document for further details. Commercial Grade product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. Contact KEMET if you require a bulk bag packaging option for Automotive Grade products.

² A packaging C-Spec (see note 1 above) is not required for "Bulk Bag" packaging (excluding Anti-Static Bulk Bag and Automotive Grade products). The 15th through 22nd character positions of the ordering code should be left blank. All product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging.

Table 3 – Standard Termination Chip Capacitor Land Pattern Design **Recommendations per IPC-7351**

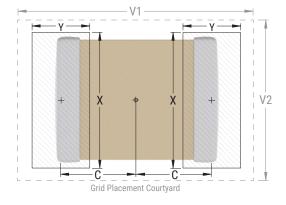
EIA Size Code	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)					ı	Media	sity Lev an (Nor rotrusio	minal))	ı		sity Lev mum (L rotrusio	.east)	ı)
Jouc	oouc	С	Y	X	V 1	V2	С	Υ	X	V1	V2	С	Y	Х	V1	V2
0402	1005	0.50	0.72	0.72	2.20	1.20	0.45	0.62	0.62	1.90	1.00	0.40	0.52	0.52	1.60	0.80
0603	1608	0.90	1.15	1.10	4.00	2.10	0.80	0.95	1.00	3.10	1.50	0.60	0.75	0.90	2.40	1.20
0805	2012	1.00	1.35	1.55	4.40	2.60	0.90	1.15	1.45	3.50	2.00	0.75	0.95	1.35	2.80	1.70
1206	3216	1.60	1.35	1.90	5.60	2.90	1.50	1.15	1.80	4.70	2.30	1.40	0.95	1.70	4.00	2.00
1210	3225	1.60	1.35	2.80	5.65	3.80	1.50	1.15	2.70	4.70	3.20	1.40	0.95	2.60	4.00	2.90
1210¹	3225	1.50	1.60	2.90	5.60	3.90	1.40	1.40	2.80	4.70	3.30	1.30	1.20	2.70	4.00	3.00
1812	4532	2.15	1.60	3.60	6.90	4.60	2.05	1.40	3.50	6.00	4.00	1.95	1.20	3.40	5.30	3.70
2220	5650	2.75	1.70	5.50	8.20	6.50	2.65	1.50	5.40	7.30	5.90	2.55	1.30	5.30	6.60	5.60

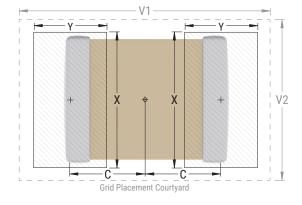
¹ Only for capacitance values ≥ 22 μF.

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.




Table 4 – Flexible Termination Chip Capacitor Land Pattern Design **Recommendations per IPC-7351 (mm)**

EIA Size Code	Metric Size Code		Maxi	sity Lev mum (I rotrusio	Most))		Media	sity Lev an (Nor rotrusio)	Density Level C: Minimum (Least) Land Protrusion (mm)						
Oouc	Jouc	С	Y	X	V1	V2	С	Υ	X	V1	V2	С	Y	X	V 1	V2		
0603	1608	0.85	1.25	1.10	4.00	2.10	0.75	1.05	1.00	3.10	1.50	0.65	0.85	0.90	2.40	1.20		
0805	2012	0.99	1.44	1.66	4.47	2.71	0.89	1.24	1.56	3.57	2.11	0.79	1.04	1.46	2.42	1.81		
1206	3216	1.59	1.62	2.06	5.85	3.06	1.49	1.42	1.96	4.95	2.46	1.39	1.22	1.86	4.25	2.16		
1210	3225	1.59	1.62	3.01	5.90	4.01	1.49	1.42	2.91	4.95	3.41	1.39	1.22	2.81	4.25	3.11		
1808	4520	2.30	1.75	2.30	7.40	3.30	2.20	1.55	2.20	6.50	2.70	2.10	1.35	2.10	5.80	2.40		
1812	4532	2.10	1.80	3.60	7.00	4.60	2.00	1.60	3.50	6.10	4.00	1.90	1.40	3.40	5.40	3.70		
2220	5650	2.85	2.10	5.50	8.80	6.50	2.75	1.90	5.40	7.90	5.90	2.65	1.70	5.30	7.20	5.60		

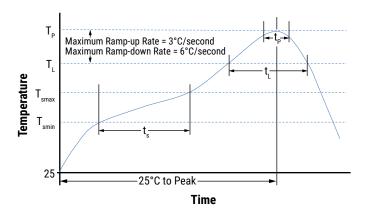
Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.

Soldering Process

Recommended Soldering Technique:

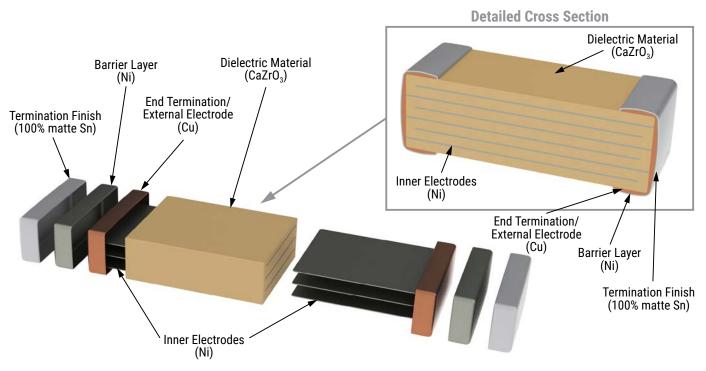

- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

Recommended Reflow Soldering Profile:

KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

Profile Feature	Terminat	ion Finish
1 Tome Teature	SnPb	100% Matte Sn
Preheat/Soak		
Temperature Minimum (T _{Smin})	100°C	150°C
Temperature Maximum (T _{Smax})	150°C	200°C
Time (t_s) from T_{Smin} to T_{Smax}	60 - 120 seconds	60 - 120 seconds
Ramp-Up Rate (T _L to T _p)	3°C/second maximum	3°C/second maximum
Liquidous Temperature (T _L)	183°C	217°C
Time Above Liquidous (t _L)	60 - 150 seconds	60 - 150 seconds
Peak Temperature (T _P)	235°C	260°C
Time Within 5°C of Maximum Peak Temperature (t _p)	20 seconds maximum	30 seconds maximum
Ramp-Down Rate (T _p to T _L)	6°C/second maximum	6°C/second maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum

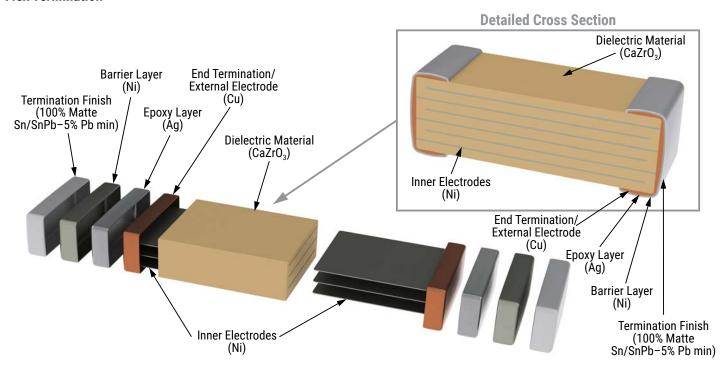
Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.



Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction


Standard Termination

Construction cont.

Flex Termination

Capacitor Marking (Optional)

Laser marking option is not available on:

- COG, U2J, X8G, X8R and Y5V dielectric devices.
- EIA 0402 case size devices.
- EIA 0603 case size devices with Flexible Termination option.
- KPS Commercial and Automotive grade stacked devices.

These capacitors are supplied unmarked only.

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

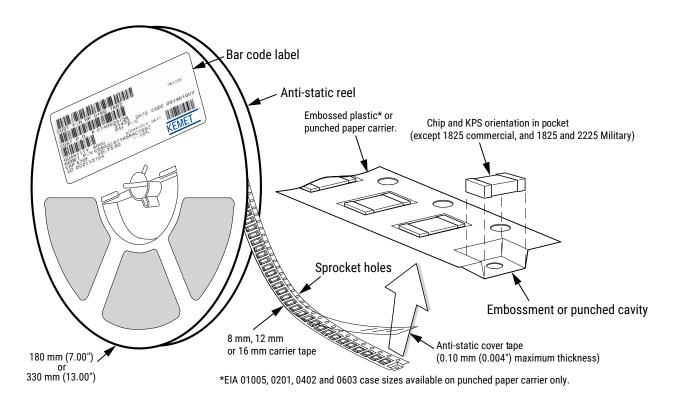


Table 5 - Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

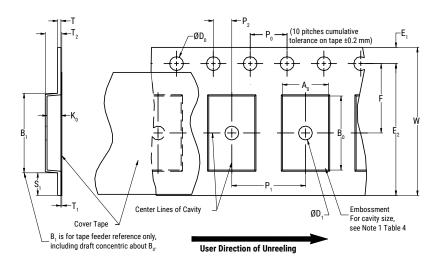
	Tape Size (W)*	Embosse	d Plastic	Punched Paper		
EIA Case Size		7" Reel	13" Reel	7" Reel	13" Reel	
		Pitch (P ₁)*		Pitch (P ₁)*		
01005 - 0402	8			2	2	
0603	8			2/4	2/4 /	
0805	8	4	4	4	4	
1206 - 1210	8	4	4	4	4	
1805 - 1808	12	4	4			
≥ 1812	12	8	8			
KPS 1210	12	8	8			
KPS 1812 and 2220	16	12	12			
Array 0612	8	4	4			

^{*}Refer to Figures 1 and 2 for W and P_1 carrier tape reference locations.

New 2 mm Pitch Reel Options*

	Packaging Ordering Code (C-Spec)	Packaging Type/Options
1	C-3190	Automotive grade 7" reel unmarked
	C-3191	Automotive grade 13" reel unmarked
	C-7081	Commercial grade 7" reel unmarked
	C-7082	Commercial grade 13" reel unmarked

^{* 2} mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.


Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- · Lower placement costs.
- Double the parts on each reel results in fewer reel changes and increased efficiency.
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste.

^{*}Refer to Tables 6 and 7 for tolerance specifications.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)				25.0 (0.984)			
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm		(0.059)				(1.181)			
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	B ₁ Maximum Note 4	${\sf E_2^{}}$ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) and double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Not	te 5
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment location and the hole location shall be applied independently of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6.)
- 3. If S, < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)
- 4. B_1 dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_{n} , B_{n} and K_{n} shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape
 - (e) for KPS product, A_0 and B_0 are measured on a plane 0.3 mm above the bottom of the pocket.
 - (f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 - Punched (Paper) Carrier Tape Dimensions

Table 7 - Punched (Paper) Carrier Tape Dimensions

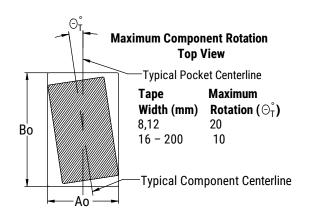
Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2		
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) maximum	0.75 (0.030)	25 (0.984)		
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A_0B_0		
8 mm	Half (2 mm)	6.25	3.5 ±0.05	2.0 ±0.05 (0.079 ±0.002)	1.1	8.3 (0.327)	Note 1		
8 mm	Single (4 mm)	(0.246)	(0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	(0.098)	8.3 (0.327)	Note 1		

- 1. The cavity defined by A_{n} , B_{n} and T shall surround the component with sufficient clearance that:
 - a) the component does not protrude beyond either surface of the carrier tape.
 - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been
 - c) rotation of the component is limited to 20° maximum (see Figure 3.)
 - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)
 - e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6.)

Packaging Information Performance Notes

1. Cover Tape Break Force: 1.0 kg minimum.


2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength		
8 mm	0.1 to 1.0 newton (10 to 100 gf)		
12 and 16 mm	0.1 to 1.3 newton (10 to 130 gf)		

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.

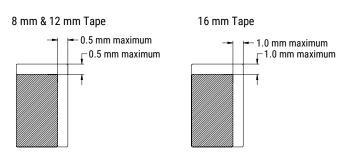

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA Standards 556 and 624.

Figure 3 – Maximum Component Rotation

Maximum Component Rotation Side View Maximum Tape Width (mm) Rotation $(\bigcirc_{\varsigma}^{\circ})$ 20 8,12 16 - 5610 72 - 2005

Figure 4 - Maximum Lateral Movement

Figure 5 - Bending Radius

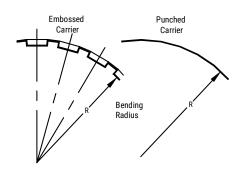
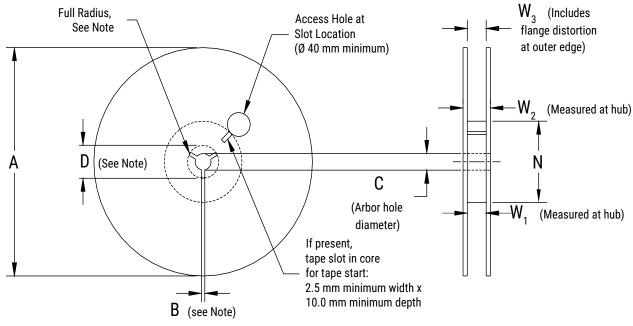
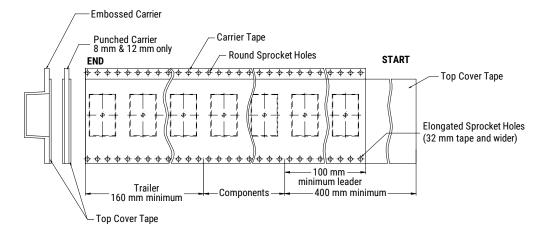



Figure 6 - Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 8 - Reel Dimensions

Metric will govern

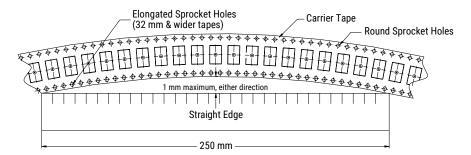

Constant Dimensions — Millimeters (Inches)								
Tape Size	A	B Minimum	С	D Minimum				
8 mm	178 ±0.20		13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)				
12 mm	(7.008 ±0.008) or	1.5 (0.059)						
16 mm	330 ±0.20 (13.000 ±0.008)	(****)	(
	Variable Dimensions — Millimeters (Inches)							
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃				
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)					
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference				
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)					

Figure 7 - Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute - and KEMET specifically disclaims - any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.