High Voltage Goldmax, 600 Series, Conformally Coated, X7R Dielectric, 500 – 3,000 VDC (Commercial Grade)

Overview

KEMET's 600 Series High Voltage Goldmax conformally coated radial leaded ceramic capacitors meet special lead spacing requirements per MIL-PRF-49467. Offered in X7R dielectric, these capacitors feature a 125°C maximum operating temperature and are considered "temperature stable." The Electronics Industries Alliance (EIA) characterizes X7R dielectric as a Class II material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling applications or for frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage and boasts

Benefits

- Radial leaded form factor
- Conformally coated
- Lead spacing per MIL-PRF-49467
- Operating temperature range of -55°C to +125°C
- RoHS and REACH compliant
- X7R temperature stable dielectric
- DC voltage ratings of 500 V, 1 KV, 1.5 KV, 2 KV, 2.5 KV and 3 KV

С

Specification/

Series

C =

Standard

Ordering Information

627

Style/Size

637

638

640

648

657

658

617

622

623

	627 628 630 631	641 642 643 647	667 668	figures. Third digit specifies number of zeros.		G = 2,000 Z = 2,500 H = 3,000		(60/40)	
1	Additional ca	pacita	nce tole	erance offerings may be availa	ble. Contact KE	EMET for details	•		

Κ

Tolerance¹

K = ±10%

M = ±20%

Z = +80%,

С

(VDC)

Capacitance Rated Voltage Dielectric

C = 500

D = 1,000

F = 1,500

² Lead materials:

С

Ceramic

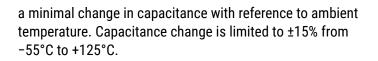
Standard: 100% matte tin (Sn) with nickel (Ni) underplate and steel core ("T" designation).

Alternative 1: 60% Tin (Sn)/40% Lead (Pb) finish with copper-clad steel core ("H" designation).

224

Capacitance

Code (pF)


First two digits

represent

significant


Alternative 2: 60% Tin (Sn)/40% Lead (Pb) finish with 100% copper core (available with "H" designation code with C-Spec). Contact KEMET for C-Spec details.

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 • 864-963-6300 • www.kemet.com

Electronic Components

These devices offer low leakage current, exhibit low ESR at high frequencies and find conventional use as snubbers or filters in applications such as switching power supplies and in lighting ballasts. Their exceptional performance at high frequencies has made them a preferred choice of design engineers worldwide. In addition to their use in power supplies, these capacitors are widely used in industries related to telecommunications, medical, military, aerospace, semiconductor and test/diagnostic equipment.

5

Design

5 =

Multilayer

R

R =

X7R

Т

Lead Finish²

T = 100%

Matte Sn

H = SnPb

Α

Failure

Rate

A =

N/A

7301

Packaging

(C-Spec)

See

"Packaging

C-Spec Orderina Options Table" below

Benefits cont'd

- Capacitance offerings ranging from 150 pF to 2.9 μF
- Available capacitance tolerances of ±10%, ±20% and +80%/-20%
- High temperature solder lead attach
- Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated lead finish allowing for excellent solderability
- SnPb-plated lead finish option available upon request (Sn60/Pb40)
- Encapsulation meets flamability standard UL 94V-0

Applications

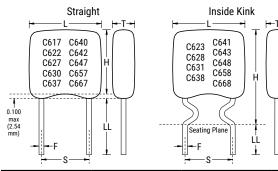
Typical applications include switch mode power supplies (input filters, resonators, tank circuits, snubber circuits, output filters), high voltage coupling and DC blocking, lighting ballasts, voltage multiplier circuits, DC/DC converters and coupling capacitors in Ćuk converters. Markets include power supply, LCD fluorescent backlight ballasts, HID lighting, telecom equipment, industrial and medical equipment/control, LAN/WAN interface, analog and digital modems, and automotive. X7R dielectrics are not designed for AC line filtering applications.

Application Notes

X7R dielectric is not recommended for AC line filtering or pulse applications.

Packaging C-Spec Ordering Options Table

Packaging Type ¹	Packaging/Grade Ordering Code (C-Spec)
Bulk Bag	Not required (Blank)
12" Reel/16.0 mm ±0.5 lead length	7301
12" Reel/18.0 mm minimum lead length	7303


¹ Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging. For more information see "Tape & Reel Packaging Information".

Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 2, Performance & Reliability.

Dimensions – Inches (Millimeters)

Series	Style/Size	S Lead Spacing Nominal	L Length Maximum	H Height Maximum	T Thickness Maximum	F Lead Diameter Nominal	LL Lead Length Minimum
C61X	617	0.170 (4.32)	0.250 (6.35)	0.220 (5.59)	0.200 (5.08)		
	622	0.220 (5.59)	0.320 (8.13)	0.280 (7.11)	0.250 (6.35)		
C62X	623	0.220 (5.59)	0.320 (8.13)	0.500 (12.70)	0.250 (6.35)		
COZX	627	0.275 (6.98)	0.370 (9.40)	0.300 (7.62)	0.250 (6.35)		
	628	0.275 (6.98)	0.370 (9.40)	0.520 (13.20)	0.250 (6.35)		
	630	0.300 (7.62)	0.450 (11.40)	0.220 (5.59)	0.200 (5.08)	0.025 (0.64)	0.276 (7.00)
0(0)	631	0.300 (7.62)	0.450 (11.40)	0.440 (11.17)	0.200 (5.08)		
C63X	637	0.375 (9.52)	0.470 (11.90)	0.400 (10.20)	0.270 (6.89)		
	638	0.375 (9.52)	0.470 (11.90)	0.620 (15.74)	0.270 (6.89)		
	640	0.400 (10.16)	0.550 (14.00)	0.280 (7.11)	0.250 (6.35)		
	641	0.400 (10.16)	0.550 (14.00)	0.780 (19.81)	0.250 (6.35)		
0641	642	0.400 (10.16)	0.500 (12.70)	0.560 (14.22)	0.200 (5.08)		
C64X	643	0.400 (10.16)	0.500 (12.70)	0.780 (19.81)	0.200 (5.08)		
	647	0.475 (12.06)	0.570 (14.50)	0.500 (12.70)	0.270 (6.89)		
	648	0.475 (12.06)	0.570 (14.50)	0.720 (18.28)	0.270 (6.89)		
0(5)	657	0.575 (14.60)	0.670 (17.02)	0.600 (15.24)	0.270 (6.89)		
C65X	658	0.575 (14.60)	0.670 (17.02)	0.820 (20.82)	0.270 (6.89)		
0(())	667	0.675 (17.14)	0.770 (19.56)	0.720 (18.29)	0.270 (6.89)		
C66X	668	0.675 (17.14)	0.770 (19.56)	0.940(23.87)	0.270 (6.89)		

Environmental Compliance

REACH and RoHS compliant with exemption when ordered with a 100% tin (Sn) wire lead finish. Product ordered with tin/ lead (Sn60/Pb40) wire lead finish do not meet RoHS criteria.

Series	Termination Finish (Wire Lead)	RoHS Compliant	RoHS Exemption Code ¹	REACH Compliant ²	Halogen Free
600 (C6XX)	100% Matte Sn	Yes	7(c)-II	Yes	Yes
600 (C6XX)	Sn60/Pb40	No	n/a	Yes	Yes

¹ 7(c)-II: Lead in dielectric ceramic in capacitors for a rated voltage of 125 VAC or 250 VDC or higher ² REACH compliance indicates product <u>does not</u> contain Substance/s of Very High Concern (SVHC)

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	±15%
Aging Rate (Maximum % Cap Loss/Decade Hour)	3.0%
Dielectric Withstanding Voltage	150% of rated voltage for voltage rating of < 1,000 V 120% of rated voltage for voltage rating of ≥ 1,000 V (5±1 second and charge/discharge not exceeding 50 mA)
Dissipation Factor (DF) Maximum Limit at 25°C	2.5%
Insulation Resistance (IR) Limit at 25°C	1,000 megohm microfarads or 100 GΩ (500 VDC applied for 120±5 seconds at 25°C)

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours. To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits. Capacitance and dissipation factor (DF) measured under the following conditions:

1 MHz ±100 kHz and 1.0 V_{ms} ±0.2 V if capacitance ≤ 1,000 pF

1 kHz ±50 Hz and 1.0 V_{rms} ±0.2 V if capacitance > 1,000 pF

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

	High Temperature Life, Biased Humidity and Storage Life								
Style/Size	Rated DC Voltage	Capacitance Value			Insulation Resistance				
All	All	All	3.0	± 20%	10% of Initial Limit				

Table 1A – C617 Style/Size, Capacitance Range Waterfall

	C61	7 Style/Size (0.	170" Lead Spac	ing)	
Rated Volt	tage (VDC)	500	1000	1500	2000
Voltag	e Code	C	D	F	G
Capacitance	Capacitance Tolerance	Сарас	citance Code (A	vailable Capaci	tance)
820pF		821	821	821	821
1000pF		102	102	102	102
1200pF		122	122	122	122
1500pF		152	152	152	152
1800pF		182	182	182	182
2200pF		222	222	222	222
2700pF		272	272	272	272
3300pF		332	332	332	332
3900pF		392	392	392	392
4700pF		472	472	472	472
5600pF		562	562		
6800pF	K = ±10%	682	682		
8200pF	M = ±20%	822	822		
0.01µF	Z = +80%, -20%	103	103		
0.012µF		123	123		
0.015µF		153	153		
0.018µF		183	183		
0.022µF		223	223		
0.027µF		273			
0.033µF		333			
0.039µF		393			
0.047µF		473			
0.056µF		563			
0.068µF		683			
0.082µF		823			
Rated Volt	tage (VDC)	500	1000	1500	2000
Voltag	e Code	C	D	F	G

Table 1B – C622 and C623 Style/Size, Capacitance Range Waterfall

	C622 an	d C623 Styl	e/Size (0.22	0" Lead Spa	cing)		
Rated Volt	age (VDC)	500	1000	1500	2000	3000	
Voltag	e Code	C	D	F	G	н	
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)					
820pF		821	821	821	821	821	
1000pF		102	102	102	102	102	
1200pF		122	122	122	122	122	
1500pF		152	152	152	152	152	
1800pF		182	182	182	182	182	
2200pF		222	222	222	222	222	
2700pF		272	272	272	272	272	
3300pF		332	332	332	332	332	
3900pF		392	392	392	392	392	
4700pF		472	472	472	472	472	
5600pF		562	562	562	562		
6800pF		682	682	682	682		
8200pF		822	822	822	822		
0.01µF	K = ±10%	103	103	103	103		
0.012µF	M = ±20%	123	123	123	123		
0.015µF	Z = +80%, -20%	153	153				
0.018µF		183	183				
0.022µF		223	223				
0.027µF		273	273				
0.033µF		333	333				
0.039µF		393	393				
0.047µF		473	473				
0.056µF		563	563				
0.068µF		683	683				
0.082µF		823					
0.1µF		104					
0.12µF		124					
0.15µF		154					
0.18µF		184					
Rated Volt	age (VDC)	500	1000	1500	2000	3000	
Voltag	e Code	C	D	F	G	н	

Table 1C – C627 and C628 Style/Size, Capacitance Range Waterfall

	C627 an	d C628 Styl	e/Size (0.27	5" Lead Spac	cing)	
Rated Volt	tage (VDC)	500	1000	1500	2000	3000
Voltag	e Code	C	D	F	G	н
Capacitance	Capacitance Tolerance	Ca	pacitance C	ode (Availab	le Capacitan	ice)
680pF		681	681	681	681	681
820pF		821	821	821	821	821
1000pF		102	102	102	102	102
1200pF		122	122	122	122	122
1500pF		152	152	152	152	152
1800pF		182	182	182	182	182
2200pF		222	222	222	222	222
2700pF		272	272	272	272	272
3300pF		332	332	332	332	332
3900pF		392	392	392	392	392
4700pF		472	472	472	472	472
5600pF		562	562	562	562	562
6800pF		682	682	682	682	
8200pF		822	822	822	822	
0.01µF		103	103	103	103	
0.012µF	K = ±10%	123	123	123	123	
0.015µF	M = ±20%	153	153	153	153	
0.018µF	Z = +80%, -20%	183	183			
0.022µF		223	223			
0.027µF		273	273			
0.033µF		333	333			
0.039µF		393	393			
0.047µF		473	473			
0.056µF		563	563			
0.068µF		683	683			
0.082µF		823	823			
0.1µF		104	104	1		
0.12µF		124				
0.15µF		154				
0.18µF		184				
0.22µF		224				
0.27µF		274				
Rated Volt	age (VDC)	500	1000	1500	2000	3000
Voltag	e Code	C	D	F	G	н

Table 1D - C630 and C631 Style/Size, Capacitance Range Waterfall

Rated Volt Voltag Capacitance		500 C	1000	1500	0000		
-		C		1300	2000	2500	3000
Capacitance	Capacitance	•	D	F	G	Z	н
	Tolerance		Сара	citance Code (A	vailable Capaci	itance)	1
150pF		151	151	151	151	151	151
180pF		181	181	181	181	181	181
220pF		221	221	221	221	221	221
270pF		271	271	271	271	271	271
330pF		331	331	331	331	331	331
390pF		391	391	391	391	391	391
470pF		471	471	471	471	471	471
560pF		561	561	561	561	561	561
680pF		681	681	681	681	681	681
820pF		821	821	821	821	821	821
1000pF	- - - -	102	102	102	102	102	102
1200pF		122	122	122	122	122	122
1500pF		152	152	152	152	152	152
1800pF		182	182	182	182	182	182
2200pF		222	222	222	222	222	222
2700pF		272	272	272	272	272	272
3300pF		332	332	332	332	332	332
3900pF	14 1004	392	392	392	392		
4700pF	K = ±10%	472	472	472	472		
5600pF	M = ±20% Z = +80%, -20%	562	562	562	562		
6800pF	Z = +80%, -20%	682	682	682	682		
8200pF		822	822	822	822		
0.01µF		103	103	103	103		
0.012µF		123	123				
0.015µF		153	153				
0.018µF		183	183				
0.022µF		223	223				
0.027µF		273	273				
0.033µF		333	333				
0.039µF		393	393	1			
0.047µF		473	473				
0.056µF		563	563				
0.068µF	-	683					
0.082µF		823					
0.1µF		104					
0.12µF		124					
0.15µF		154					
0.18µF		184					
Rated Volt	age (VDC)	500	1000	1500	2000	2500	3000
Voltag	e Code	C	D	F	G	Z	н

Table 1E – C637 and C638 Style/Size, Capacitance Range Waterfall

		C637 an	d C638 Style/Si	ize (0.375" Lead	Spacing)		
Rated Volt	age (VDC)	500	1000	1500	2000	2500	3000
Voltag	e Code	C	D	F	G	Z	н
Capacitance	Capacitance Tolerance		Сара	citance Code (A	vailable Capaci	tance)	
1000pF		102	102	102	102	102	102
1200pF		122	122	122	122	122	122
1500pF		152	152	152	152	152	152
1800pF		182	182	182	182	182	182
2200pF		222	222	222	222	222	222
2700pF		272	272	272	272	272	272
3300pF		332	332	332	332	332	332
3900pF		392	392	392	392	392	392
4700pF		472	472	472	472	472	472
5600pF		562	562	562	562	562	562
6800pF		682	682	682	682	682	682
8200pF		822	822	822	822	822	822
0.01µF		103	103	103	103	103	103
0.012µF		123	123	123	123	123	123
0.015µF		153	153	153	153	153	153
0.018µF		183	183	183	183		
0.022µF	K = ±10%	223	223	223	223		
0.027µF	$M = \pm 20\%$	273	273	273	273		
0.033µF	Z = +80%, -20%	333	333	333	333		
0.039µF		393	393				
0.047µF		473	473				
0.056µF		563	563				
0.068µF		683	683				
0.082µF		823	823				
0.1µF		104	104				
0.12µF		124	124				
0.15µF		154	154				
0.18µF		184	184				
0.22µF		224	224				
0.27µF		274	274	1			
0.33µF		334					
0.39µF		394					
0.47µF		474					
0.56µF		564					
Rated Volt	age (VDC)	500	1000	1500	2000	2500	3000
Voltan	e Code	С	D	F	G	z	н

Table 1F - C640 and C641 Style/Size, Capacitance Range Waterfall

	C640 and	C641 Style/Siz	ze (0.400" Lea	d Spacing)	
Rated Vol	tage (VDC)	500	1000	2000	3000
Voltag	e Code	С	D	G	н
Capacitance	Capacitance Tolerance	Capac	itance Code (A	vailable Capaci	tance)
680pF		681	681	681	681
820pF		821	821	821	821
1000pF		102	102	102	102
1200pF		122	122	122	122
1500pF		152	152	152	152
1800pF		182	182	182	182
2200pF		222	222	222	222
2700pF		272	272	272	272
3300pF		332	332	332	332
3900pF		392	392	392	392
4700pF		472	472	472	472
5600pF		562	562	562	562
6800pF		682	682	682	682
8200pF		822	822	822	822
0.01µF		103	103	103	103
0.012µF	14 110%	123	123	123	
0.015µF	K = ±10% M = ±20%	153	153	153	
0.018µF	Z = +80%, -20%	183	183	183	
0.022µF	Z - +00%, -20%	223	223	223	
0.027µF	1	273	273	273	
0.033µF	1 [333	333	333	
0.039µF	1	393	393		
0.047µF		473	473		
0.056µF		563	563		
0.068µF		683	683		
0.082µF		823	823		
0.1µF		104	104		
0.12µF		124	124		
0.15µF		154	154		
0.18µF		184			
0.22µF		224			
0.27µF		274			
0.33µF		334			
0.39µF		394			
Rated Vol	tage (VDC)	500	1000	2000	3000
Voltag	e Code	C	D	G	Н

Table 1G - C642 and C643 Style/Size, Capacitance Range Waterfall

C642 and C643 Style/Size (0.400" Lead Spacing)							
Rated Vol	tage (VDC)	500	1000	2000	3000		
Voltag	Voltage Code		D	G	н		
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)					
1200pF		122	122	122	122		
1500pF		152	152	152	152		
1800pF		182	182	182	182		
2200pF		222	222	222	222		
2700pF		272	272	272	272		
3300pF		332	332	332	332		
3900pF		392	392	392	392		
4700pF		472	472	472	472		
5600pF		562	562	562	562		
6800pF		682	682	682	682		
8200pF		822	822	822	822		
0.01µF		103	103	103	103		
0.012µF		123	123	123	123		
0.015µF		153	153	153			
0.018µF		183	183				
0.022µF		223	223				
0.027µF	K = ±10%	273	273				
0.033µF	M = ±20%	333	333				
0.039µF	Z = +80%, -20%	393	393				
0.047µF		473	473				
0.056µF		563	563				
0.068µF		683	683				
0.082µF		823	823				
0.1µF		104	104				
0.12µF		124	124				
0.15µF		154	154				
0.18µF		184	184				
0.22µF		224	224				
0.27µF		274					
0.33µF		334					
0.39µF		394					
0.47µF		474					
0.56µF		564					
0.68µF		684					
0.82µF		824					
Rated Vol	tage (VDC)	500	1000	2000	3000		
Voltag	e Code	С	D	G	н		

Table 1H – C647 and C648 Style/Size, Capacitance Range Waterfall

C647 & C648 Style/ Size (0.475" Lead Spacing)							
Rated Volt	age (VDC)	500	1000	2000	3000		
Voltag	e Code	C	D	G	Н		
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)					
1000pF		102	102	102	102		
1200pF		122	122	122	122		
1500pF		152	152	152	152		
1800pF		182	182	182	182		
2200pF		222	222	222	222		
2700pF		272	272	272	272		
3300pF		332	332	332	332		
3900pF		392	392	392	392		
4700pF		472	472	472	472		
5600pF		562	562	562	562		
6800pF		682	682	682	682		
8200pF		822	822	822	822		
0.01µF		103	103	103	103		
0.012µF		123	123	123	123		
0.015µF		153	153	153	153		
0.018µF		183	183	183	183		
0.022µF		223	223	223	223		
0.027µF	K = ±10%	273	273	273	273		
0.033µF	$K = \pm 10\%$ M = $\pm 20\%$	333	333	333	333		
0.039µF	Z = +80%, -20%	393	393	393			
0.047µF	2 - +00%, -20%	473	473	473			
0.056µF		563	563	563			
0.068µF		683	683	683			
0.082µF		823	823	823			
0.1µF		104	104	104			
0.12µF		124	124				
0.15µF		154	154				
0.18µF		184	184				
0.22µF		224	224				
0.27µF		274	274				
0.33µF		334	334				
0.39µF		394	394				
0.47µF		474	474				
0.56µF		564					
0.68µF		684					
0.82µF		824					
1.0µF		105					
1.2µF		125					
Rated Volt	age (VDC)	500	1000	2000	3000		
Voltag	e Code	С	D	G	н		

Table 11 – C657 and C658 Style/Size, Capacitance Range Waterfall

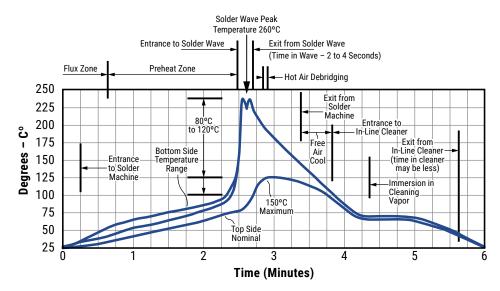
C657 & C658 Style/Size (0.575" Lead Spacing)						
Rated Voltage (VDC) Voltage Code		500	1000	2000	3000	
		C	D	G	Н	
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)				
2200pF		222	222	222	222	
2700pF		272	272	272	272	
3300pF		332	332	332	332	
3900pF		392	392	392	392	
4700pF		472	472	472	472	
5600pF		562	562	562	562	
6800pF 8200pF		682 822	682 822	682 822	682 822	
0.01µF		103	103	103	103	
0.012µF		103	103	103	103	
0.012µF		123	123	123	123	
0.018µF		183	183	183	183	
0.022µF		223	223	223	223	
0.027µF		273	273	273	273	
0.033µF		333	333	333	333	
0.039µF		393	393	393	393	
0.047µF		473	473	473	473	
0.056µF	K = ±10%	563	563	563		
0.068µF	M = ±20%	683	683	683		
0.082µF	Z = +80%, -20%	823	823	823		
0.1µF		104	104	104		
0.12µF		124	124	124		
0.15µF		154	154			
0.18µF		184	184			
0.22µF		224	224			
0.27µF		274	274			
0.33µF		334	334			
0.39µF		394	394			
0.47µF		474	474			
0.56µF		564	564			
0.68µF		684	684			
0.82µF		824	824			
1.0µF		105				
1.2µF		125				
1.5µF		155				
1.8µF		185				
Rated Volt	age (VDC)	500	1000	2000	3000	
Voltag	e Code	С	D	G	н	

Table 1J – C667 and C668 Style/Size, Capacitance Range Waterfall

C667 & C668 Style/Size (0.675" Lead Spacing)							
Rated Volt	age (VDC)	500	1000	2000	3000		
Voltag	e Code	C	D	G	н		
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)					
2200pF		222	222	222	222		
2700pF		272	272	272	272		
3300pF		332	332	332	332		
3900pF		392	392	392	392		
4700pF		472	472	472	472		
5600pF		562	562	562	562		
6800pF		682	682	682	682		
8200pF		822	822	822	822		
0.01µF		103	103	103	103		
0.012µF		123	123	123	123		
0.015µF		153	153	153	153		
0.018µF		183	183	183	183		
0.022µF		223	223	223	223		
0.027µF		273	273	273	273		
0.033µF		333	333	333	333		
0.039µF		393	393	393	393		
0.047µF		473	473	473	473		
0.056µF		563	563	563	563		
0.068µF	K = ±10%	683	683	683	683		
0.082µF	M = ±20%	823	823	823	823		
0.1µF	Z = +80%, -20%	104	104	104	104		
0.12µF		124	124	124	101		
0.15µF		154	154	154			
0.18µF		184	184	184			
0.22µF		224	224	104			
0.27µF		274	274				
0.27µF		334	334				
0.39µF		334 394	334				
		474	474				
0.47µF		474 564	474 564				
0.56µF							
0.68µF		684	684				
0.82µF		824	824				
1.0µF		105	105				
1.2µF		125					
1.5µF		155					
1.8µF		185					
2.2µF		225					
2.7µF		275					
2.9µF		295					
Rated Volt	- , ,	500	1000	2000	3000		
Voltag	e Code	C	D	G	н		

Packaging Quantities

Style/ Size	Standard Bulk Quantity	Ammo Pack Quantity Maximum	Reel Quantity Maximum (12" Reel)
617	250/Bag		1000
622/623			
627/628	100/Bag		
630/631			
637/638		N/A	500
640/641	50/Pag	IN/A	
642/643	50/Bag		
647/648			
657/658	25		250
667/668	20		230

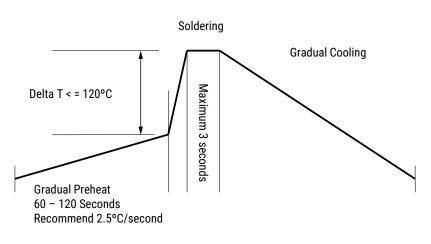

Soldering Process

Recommended Soldering Methods:

- Solder Wave
- Hand Soldering (Manual)

Recommended Soldering Profile:

Optimum Wave Solder Profile



Mounting

All encased capacitors will pass the Resistance to Soldering Heat of MIL-STD-202, Method 210, Condition C. This test simulates wave solder topside board mount product. This demonstration of resistance to solder heat is in accordance with what is believed to be the industry standard. More severe treatment must be considered reflective of an improper soldering process.

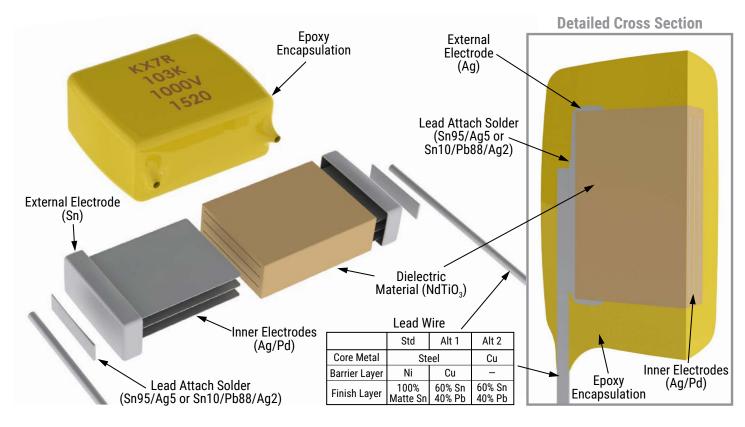
The above figure is a recommended solder wave profile for both axial and radial leaded ceramic capacitors.

•Hand Soldering (Manual)

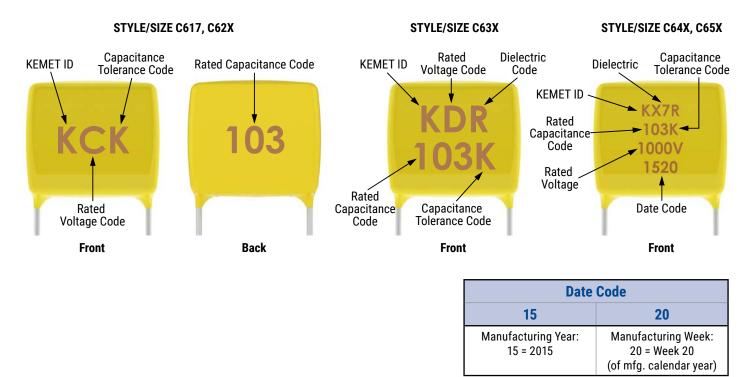
Manual Solder Profile with Pre-heating

Table 2 – Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method	
Solderability	J-STD-002	Magnification 50X. Conditions: a) Method A, at 235°C, Category 3	
Temperature Cycling	JESD22 Method JA-104	1,000 cycles (-55°C to +125°C), measurement at 24 hours +/-4 hours after test conclusion.	
Biased Humidity	MIL-STD-202 Method	Load humidity, 1,000 hours 85°C/85%RH and 200Vdc maximum. Add 100 K ohm resistor. Measurement at 24 hours +/-4 hours after test conclusion.	
Diabea Haimarty	103	Low volt humidity, 1,000 hours 85C°/85%RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/-4 hours after test conclusion.	
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered. Measurement at 24 hours +/-4 hours after test conclusion.	
Thermal Shock	MIL-STD-202 Method 107	-55°C to +125°C. Note: Number of cycles required – 300. Maximum transfer time – 20 seconds. Dwell time – 15 minutes. Air – Air.	
High Temperature Life	MIL-STD-202 Method 108/EIA-198	1,000 hours at 125°C with 1.2 X rated voltage applied.	
Storage Life	MIL-STD-202 Method 108	125°C, 0 VDC for 1,000 hours.	
Vibration	MIL-STD-202 Method 204	5 g for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8"X5" PCB .031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10-2000 Hz.	
Resistance to Soldering Heat	MIL-STD-202 Method 210	Condition B. No preheat of samples. Note: single wave solder – procedure 2.	
Terminal Strength	MIL-STD-202 Method 211	Conditions A (454g), Condition C (227g)	
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition C.	
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical – OKEM Clean or equivalent.	


Storage & Handling

The un-mounted storage life of a leaded ceramic capacitor is dependent upon storage and atmospheric conditions as well as packaging materials. While the ceramic chips enveloped under the epoxy coating themselves are quite robust in most environments, solderability of the wire lead on the final epoxy-coated product will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature and exposure to direct sunlight – reels may soften or warp, and tape peel force may increase.


KEMET recommends storing the un-mounted capacitors in their original packaging, in a location away from direct sunlight, and where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 18 months of receipt. For applications requiring pre-tinning of components, storage life may be extended if solderability is verified. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes.

Construction

Marking

Tape & Reel Packaging Information

KEMET offers standard reeling of Molded and Conformally Coated Radial Leaded Capacitors in accordance with EIA standard 468. Parts are taped to a tagboard carrier strip, and wound on a reel as shown in Figure 1. Kraft paper interleaving is inserted between the layers of capacitors on the reel. Ammopack is also available, with the same lead tape configuration and package quantities.

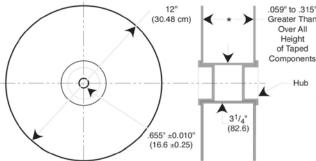
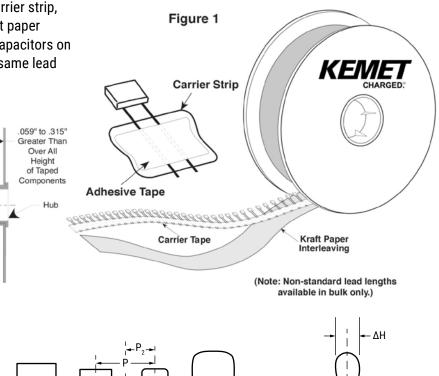



Figure 3: Standard Reel

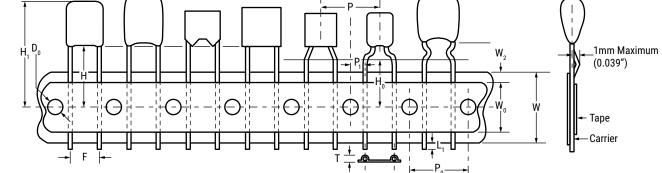


Figure 2: Lead Tape Configuration (See Table Below)

Ceramic Radial Tape and Reel Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)							
D ₀ ±0.2 (0.008)	P ₀ ±0.3 (0.012)	ΔH ±0.2 (0.008)	L _ı Maximum	t ±0.2 (0.008)	T Maximum	W +1.0/-0.5 (+0.039/-0.020)	W₀ Minimum	W ₂ Maximum
4.00 (0.157)	12.7 (0.500)	4.0 (0.157)	1.0 (0.039)	0.7 (0.051)	1.5 (0.059)	18.0 (0.709)	5.0 (0.197)	3.0 (0.118)

Ceramic Radial Tape and Reel Dimensions cont'd

Metric will govern

	Variable Dimensions – Millimeters (Inches)								
				ŀ	4	H _o			
F	P ₁	Р	P ₂	Straight Lead	Configuration	Formed Lead Configuration ²			
±0.78 (0.030) ¹	±0.30 (0.012) ¹	±0.3 (0.012)	±1.3 (0.51)		Packagin	g C-Spec ³			
				7301/7305	7303/7317	7301/7305	7303/7317		
2.54 (0.100)	5.08 (0.200)	12.7 (0.500)	6.35 (0.250)						
4.32 (0.170)	3.89 (0.153)	12.7 (0.500)	6.35 (0.250)		18.0 (0.709) Minimum	16.0±0.5 (0.630±0.020)	18.0 (0.709) Minimum		
5.08 (0.200)	3.81 (0.150)	12.7 (0.500)	6.35 (0.250)	0)					
5.59 (0.220)	3.25 (0.128)	12.7 (0.500)	6.35 (0.250)						
6.98 (0.275)	2.54 (0.100)	12.7 (0.500)	6.35 (0.250)						
7.62 (0.300)	2.24 (0.088)	12.7 (0.500)	6.35 (0.250)	16.0±0.5 (0.630±0.020)					
9.52 (0.375)	7.62 (0.300)	12.7 (0.500)	6.35 (0.250)						
10.16 (0.400)	7.34 (0.290)	25.4 (1.000)	N/A						
12.06 (0.475)	6.35 (0.250)	25.4 (1.000)	N/A						
14.60 (0.575)	5.08 (0.200)	25.4 (1.000)	N/A						
17.14 (0.675)	3.81 (0.15)	25.4 (1.000)	N/A						

¹ Measured at the egress from the carrier tape, on the component side.

² Formed lead configuration includes: "shoulder bend", "inside kink", "outside kink", and "snap-in". For more information regarding available lead configurations see "Dimensions" section of this document.

³ The "Packaging C-Spec" is a 4 digit code which identifies the packaging type, lead length and/or lead material. When ordering, the proper code must be included in the 15th through 18th character positions of the ordering code. See "Ordering Information" section of this document for further details.

9	Symbol Reference Table				
D ₀	Sprocket Hole Diameter				
P ₀	Sprocket Hole Pitch				
Р	Component Pitch				
F	Lead Spacing				
P ₁	Sprocket Hole Center to Lead Center				
P ₂ Sprocket Hole Center To Component Center					
Н	Height to Seating Plane (Straight Leads Only)				
H	Height to Seating Plane (Formed Leads Only)				
H ₁	Component Height Above Tape Center				
ΔH	Component Alignment				
L	Lead Protrusion				
t	Composite Tape Thickness				
W	Carrier Tape Width				
W ₀	Hold-Down Tape Width				
W ₂	Hold-Down Tape Location				

KEMET Electronic Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.