							R	EVISI	ONS										
LTR					DESCF	RIPTIO	N					DA	TE (YF	R-MO-	DA)		APPR	OVED)
					DESCR		11					DA							
REV																			
SHEET																			
REV																			
SHEET	15	16	17	18															
	ò			REV SUFFT					4	r	<u> </u>	~	0		10	14	10	10	4.4
UF SHEETS				SHEEL			2	3	4	э	ю	1	ŏ	Э	10	- 11	12	13	14
STAN MICRO		D UIT		Greg Ce CHECK Greg Ce	ED BY				DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil										
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE			IE NSE	APPROVED BY Charles F. Saffle DRAWING APPROVAL DATE 15-11-02				Ē	MIC CH	CRO	CIRC	CUIT, DC/E	, HYE DC C	BRID), LIN ERT	IEAR ER	R, SIN	NGLE	Ξ
AMS	SC N/A	A		REVISIO	ON LEVI	ΞL			SI	ZE	CA	GE CC 67268	DDE B		59	62-	152	224	
									SHE	ET		1	OF	18					

DSCC FORM 2233 APR 97

5962-E530-15

1.1 <u>Scope</u>. This drawing documents five product assurance classes as defined in paragraph 1.2.3 and MIL-PRF-38534. A choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.

1.2 PIN. The PIN shall be as shown in the following example:

1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. RHA marked devices meet the MIL-PRF-38534 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	Circuit function
01	LSO2801R5S	DC-DC Converter, 12 W, +1.5 V Output
02	LSO2801R8S	DC-DC Converter, 14.4 W, +1.8 V Output
03	LSO2802R5S	DC-DC Converter, 20 W, +2.5 V Output
04	LSO2803R3S	DC-DC Converter, 25 W, +3.3 V Output
05	LSO2805S	DC-DC Converter, 20 W, +5 V Output
06	LSO2812S	DC-DC Converter, 30 W, +12 V Output
07	LSO2815S	DC-DC Converter, 30 W, +15 V Output

1.2.3 <u>Device class designator</u>. This device class designator is a single letter identifying the product assurance level. All levels are defined by the requirements of MIL-PRF-38534 and require QML Certification as well as qualification (Class H, K, and E) or QML Listing (Class G and D). The product assurance levels are as follows:

Device class		<u> </u>	Device performa	ance documentation					
К	Highest reliability class available. This level is intended for use in space applications.								
н	Standard military quality class level. This level is intended for use in applications where non-space high reliability devices are required.								
G	Reduced testing version of the standard military quality class. This level uses the Class H screening and In-Process Inspections with a possible limited temperature range, manufacturer specified incoming flow, and the manufacturer guarantees (but may not test) periodic and conformance inspections (Group A, B, C, and D).								
E	Designates with except be specifie should be r system per	Designates devices which are based upon one of the other classes (K, H, or G) with exception(s) taken to the requirements of that class. These exception(s) must be specified in the device acquisition document; therefore the acquisition document should be reviewed to ensure that the exception(s) taken will not adversely affect system performance.							
D	Manufactur internal, QM	er specifie //L certifiec	d quality class. d flow. This proc	Quality level is defined by duct may have a limited ten	the manufacturers				
1.2.4 Case outline(s). The case	outline(s) are as des	signated in	MIL-STD-1835	and as follows:					
Outline letter Descrip	tive designator	Termina	<u>als</u>	Package style					
X Se	e figure 1	13		Straight leads with side mo	ounting tabs				
STANDA MICROCIRCUIT	RD DRAWING		SIZE A		5962-15224				
DLA LAND AND N COLUMBUS, OHIO	/ARITIME 43218-3990			REVISION LEVEL	SHEET 2				

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38534.	
1.3 Absolute maximum ratings. 1/ 2/	
Input Voltage (Continuous) Case Operating Temperature Range (T _{C)} Lead temperature (soldering, 10 seconds) Storage temperature	60 V dc -55°C to +125 °C +300°C -55 °C to +130 °C
1.4 <u>Recommended operating conditions</u> .	
Input voltage range Case operating temperature range (T _c)	+18 V dc to +40 V dc -55°C to +85°C
1.5 <u>Radiation features</u> . <u>3</u> /	
Maximum total dose available (dose rate = 50 - 300 rads(Si)/s) Neutron Irradiation (1 MeV equivalent neutrons)	100 krad(Si)_ <u>4/ 5/</u> 1x10 ¹² n/cm ² <u>6</u> /
Single event phenomenon (SEP) effective linear energy transfer (LET): No SEL, SEB, SEFI, SEGR SEU	<u><</u> 82 MeV-cm ² /mg <u>7</u> / <u><</u> 82 MeV-cm ² /mg <u>8</u> /

2. APPLICABLE DOCUMENTS

2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-19500	 Semiconductor Devices, General Specification for.
MIL-PRF-38534	- Hybrid Microcircuits, General Specification for.
MIL-PRF-38535	- Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-1835	-	Interface Standard for Electronic Component Case Outlines.
MIL-STD-750	-	Test Method Standard for Semiconductor Devices

- Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at <u>1</u>/ the maximum levels may degrade performance and affect reliability. Device types 01 through 07 operation between +85°C and +125°C is guaranteed, but no parametric limits are
- <u>2</u>/ specified in Table IA. For operation above the recommended maximum case temperature of +85°C contact the approved source of supply.
- See 4.3.5 for the manufacturer's radiation hardness assurance analysis and testing. <u>3</u>/
- 4/ A representative device has been High Dose Rate (HDR) tested using Condition A of Method 1019 of MIL-STD-883 to 150 krad(Si) to ensure Radiation Hardness Assurance designator levels "L" of 50 krad(si) and "R" of 100 krad(si). A representative device will be re-tested after design or process changes that may affect the RHA response of these devices.
- The devices on this SMD have not been characterized for Enhanced Low Dose Rate Sensitivity (ELDRS).
- <u>5/</u> 6/ Linear bipolar integrated circuit and bipolar semiconductor components are tested per method 1017 of MIL-STD-883 to (1x10¹² n/cm²⁾. Single event performance is tested on representative devices. No Gate Ruptures, Latch-up, Burn-out, or Single Event
- <u>7/</u> Function Interrupts were exhibited to the limit specified. See table IB.
- 8/ Single event upsets (transient voltages) observed were within the limit specified in Table IB.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 3

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://quicksearch.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Non-Government publications</u>. The following documents form a part of this document to the extent specified herein.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)

ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices.

Copies of these documents are available online at http://www.astm.org/

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. The manufacturer may eliminate, modify or optimize the tests and inspections herein, however the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class. In addition, the modification in the QM plan shall not affect the form, fit, or function of the device for the applicable device class.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked.

3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DLA Land and Maritime-VA) upon request.

3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DLA Land and Maritime-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 4

3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

- 4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime-VA, or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) T_C as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 5

	TA	BLE IA. <u>Electri</u>	cal performance	characteristics	<u>3</u> .			
Test	Symbol	Condit	ions <u>1</u> /	Group A	Device	Limits		Unit
		$-55^{\circ}C \le T_C \le +85^{\circ}C$ $V_{IN} = +28 V dc \pm 5\%$ Full Load, $C_L = 0$ unless otherwise specified		subgroups	type	Min	Max	
Output voltage	Vout	V_{IN} = 18 V dc to 40 V dc		1	0.1	1.48	1.52	V dc
		I _{OUT} = 8 A		2,3	01	1.47	1.53	
				1	00	1.78	1.82	
				2,3	02	1.77	1.83	
				1	02	2.48	2.52	
				2,3	03	2.47	2.53	
					01	1.455	1.545	
		L, R <u>2</u> / <u>3</u> /	1,2,3	02	1.746	1.854		
					03	2.425	2.575	
		$V_{IN} = 18 \text{ V dc}$	to 40 V dc	1		3.28	3.32	
		Ι _{ΟUT} = 7.57 Α		2,3	04	3.27	3.33	
			L, R <u>2</u> / <u>3</u> /	1,2,3		3.201	3.399	
		$V_{IN} = 18 \text{ V dc}$	to 40 V dc	1		4.97	5.03	
		I _{OUT} = 6 A		2,3	05	4.95	5.05	
			L, R <u>2/3/</u>	1,2,3		4.85	5.15	
		$V_{IN} = 18 \text{ V dc}$	to 40 V dc	1		11.94	12.06	
		Ι _{ΟUT} = 2.5 Α		2,3	06	11.88	12.12	
			L, R <u>2/3</u> /	1,2,3		11.64	12.36	
		$V_{IN} = 18 \text{ V dc}$	to 40 V dc	1		14.92	15.08	
		Ι _{ΟUT} = 2 Α		2,3	07	14.85	15.15	
			L, R <u>2</u> / <u>3</u> /	1,2,3		14.55	15.45	
See footnotes at end of table.								

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 6

	TABLE I	A. Electrical perform	nance chara	cteristics	<u>s</u> – Cor	ntinued.			
Test	Symbol	Conditions	<u>1</u> /	Grou	ρА	Device	Lir	nits	Unit
		$-55^{\circ}C \le T_C \le V_{IN} = +28 V de Full Load, C unless otherwise$	+85°C c ± 5% ∟ = 0 specified	subgro	oups	type	Min	Max	
Output Current <u>4</u> /	I _{OUT}	$V_{IN} = 18 \text{ V dc to } 40$	0 V dc			01		8.00	
		<u>2</u> /				02		8.00	
						03		8.00	
						04		7.57	А
						05		6.00	
						06		2.50	
						07		2.00	
V _{OUT} Ripple Voltage	V _{RIP}	BW = 20 kHz to 10 V _{IN} = 18 V, 28 V, 4 100 % load	0 MHz 40 V dc	1,2	,3	01, 02, 03, 04		18	
		L,	R <u>2</u> / <u>3</u> /					35	
						05, 07		30	mVp-p
		L,	R <u>2/3/</u>					50	
						06		30	
		L,	R <u>2/3</u> /					70	
V _{OUT} Line Regulation <u>5</u> /	VR _{LINE}	V _{IN} = 18 V, 28 V, 4 0%, 50%, 100 % I	10 V dc oad <u>2</u> /	1,2	,3	All	-0.5	0.5	%
V _{OUT} Load Regulation <u>5</u> /	VR _{LOAD}	V _{IN} = 18 V, 28 V, 40 V dc 0%, 50%, 100 % load <u>2</u> /		1,2	,3	All	-1.0	1.0	%
Total Regulation (Line and Load) <u>5</u> /		V _{IN} = 18 to 40 V de 0% to 100 % load	c <u>2</u> /	1,2	,3	All	-1.0	1.0	%
Input Current 6/	I _{IN}	Pin 4 shorted to pi	in 3 <u>2</u> /	<u>2</u> /		All		8	
		I _{OUT} = 0, Inhibit (pi	n 3) =	1,2	,3	01 to 04		60	mA
		open <u>2</u> /				05 to 07		70	
Input undervoltage lockout	UVLO	0% to 100 % load		1,2	,3	All	14.6	15.9	
(turn off when V _{In} decreasing)		L,	R <u>2/3</u> /				14.0	16.5	V
Input undervoltage release	UVR	0% to 100 % load		1,2	,3	All	16.6	17.3	V
(turn off when V _{In} rising)		L,	R <u>2</u> / <u>3</u> /				15.5	17.9	v
See footnotes at end of table.									
STAN MICROCIRCU	DARD JIT DRAV	VING	SIZ A	E				5962-	15224
DLA LAND AI COLUMBUS, O	ND MARITII HIO 43218-	ME 3990			REVI	SION LEVE	L	SHEET	7

	TABLE I	A. Electrical perfor	mance chara	cteristics	<u>s</u> – Cor	ntinued.			
Test	Symbol	Condition	s <u>1</u> /	Grou	ір А	Device	Lir	nits	Unit
		-55°C ≤ T _C ≤ V _{IN} = +28 V c Full Load, 0 unless otherwise	≦+85°C dc	subgr	oups	type	Min	Max	
Input under voltage hysteresis	UVR- UVLO	0% to 100 % load	b	1,2	.,3	All	1.0	3.0	V
Input current telemetry ratio	I _{CT}	100% load		1,2	.,3	All	1.42	1.56	\//A
		L	, R <u>2</u> / <u>3</u> /				1.4	1.6	V/A
Switching Frequency	Fs			1,2	.,3	All	465	525	kH7
		L	., R <u>2</u> / <u>3</u> /				425	575	KI IZ
Overvoltage protection	OVP	0% load to 100%	load	1,2	,3	All	117	123	mV
Output voltage threshold		L	, R <u>2</u> / <u>3</u> /				115	125	
Enable input (inhibit function) open circuit voltage drive <u>7</u> /						All	3.0	6.0	V
Enable input (inhibit function) drive current (sink) <u>7</u> /						All		100	μA
Enable input (inhibit function) voltage range <u>7/ 8</u> /						All	-0.5	50	V
Efficiency <u>6</u> /	Eff	I _{OUT} = 100% load	<u>2</u> /	1,2	.,3	01	60		
						02	63		
						03	67		%
						04	71		
						05, 06,07	77		
Isolation <u>6</u> /	ISO	100 V dc, $T_c = +2$	25°C <u>2</u> /	1		All	20		MΩ
Capacitive Load <u>7/ 9</u> /	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2500						
						04		2200	_
						05		1000	μF
						06		180	
						07		120	
Short Circuit Power Dissipation <u>6</u> /	PD	Short Circuit 2/		1,2	.,3	All		16	W
Overload current limit point <u>10</u> /	I _{LIM}	$V_{OUT} = 90\%$ of no	ominal <u>2</u> /	1,2	.,3	All	105	145	%
See footnotes at end of table.									
STAN MICROCIRCU	DARD JIT DRAV	VING	SIZ A	E				5962-	15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990					REVI	SION LEVE	EL	SHEET	3

	TABLE I	A. <u>Electrical pe</u>	rformance chara	<u>acteristic</u> – Cor	ntinued.			
Test	Symbol	Condit	tions <u>1</u> /	Group A	Device	Lin	Limits	
		$-55^{\circ}C \le T$ $V_{IN} = +28$ Full Loa unless other	$C \le +85^{\circ}C$ V dc ± 5% d, C _L = 0 wise specified	subgroups	type	Min	Max	
Overload power dissipation <u>6</u> /	P _D	V _{OUT} = 90% of	nominal <u>2</u> /	1,2,3	All	10.5	16	w
Line Rejection <u>7</u> /	REJ	T _C = +25°C All 50 100% load, dc to 50 kHz			dB			
			L, R <u>2/3/</u>		All	40		
V_{OUT} Step Load Transient <u>11</u> /	V_{OUT} Step Load Transient V_{TLOAD} 50% load to 100% load to 10		00% load	4,5,6	01,02, 03		600	
					04		250	
			L, R <u>2</u> / <u>3</u> /			-300	300	mV pk
					05		230	
					06		210	-
					07		200	
V _{OUT} Step Load Transient Recovery <u>11</u> / <u>12</u> /	TT _{LOAD}	50% Load to 1 V _{IN} = 28 V dc	100% Load	4,5,6	All		150	μS
			L, R <u>2/</u> 3/				200	
V _{OUT} Step Line Transient <u>7</u> / <u>13</u> /	V _{TLINE}	V _{IN} = 18 V dc	to 40 V dc		All		300	mV pk
V _{OUT} Step Line Transient Recovery <u>7</u> / <u>12</u> / <u>13</u> /	TT _{LINE}	V _{IN} = 18 V dc	to 40 V dc		All		200	μs
Turn on overshoot	Vton _{OS}	10% load, full	load	4,5,6	All		50	mV pk
Turn on delay <u>14</u> /	Ton _D	10% load, full	load	4,5,6	All		10	~~~
			L, R <u>2</u> / <u>3</u> /				12	ms

1/ Post irradiation testing shall be in accordance with 4.3.5 and table IA herein.

A representative device has been tested using Condition A (50-300 rad(Si)/s) of Method 1019 to 150 krad(Si) for these parameters to ensure Radiation Hardness Assurance designator levels R and L. A representative device will be re-tested after design or process changes that may affect the RHA response of these devices.

- 3/ End of Life (EOL) Performance guaranteed to meet stated limits by worst-case analysis, which includes radiation,
- temperature, and aging effects.
- $\frac{4}{2}$ Parameter verified during line and load regulation tests.
- 5/ Percent of nominal output voltage.
- 6/ This parameter is not included in the worst-case analysis. The end-of-life tolerances are supported by post-irradiation and life test data.
- <u>7</u>/ Parameter shall be tested as part of device characterization and after design and process changes. Thereafter, parameters shall be guaranteed to the limits specified in table IA.
- 8/ Enable input function is compatible with relay interface or open collector as determined in worst-case analysis.
- $\underline{9}$ / Capacitive load may be any value from 0 to the maximum limit without compromising DC performance.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 9

TABLE IA. Electrical performance characteristic - Continued.

- <u>10</u>/ Current limit point is defined as the output current, relative to full rated load, such that Vout = 90% of the nominal output voltage.
- <u>11</u>/ Load step transition time \geq 10 µs.
- 12/ Recovery time is measured from the initiation of the transient to where V_{OUT} has returned within ±1 percent of its steady state value.
- <u>13</u>/ Line step transition time \geq 100 µs.
- <u>14</u>/ Turn on delay time from either a step application of input power or a logic low to a logic high transition on the inhibit pin (Pin 3) to the point where $V_{OUT} = 90\%$ of nominal.

Device types	SEP	Temperature (T _C)	Conditions/Results	Effective linear energy transfer (LET)
All	SEU (SET)	+25°C	The largest transients on all models are 100 mV or 3.3% of the nominal output voltage whichever is the greater. With a duration of less than 200 μ s.	≤ 82 MeV-cm ² /mg
All	SEFI Shutdowns	+25°C	None	≤ 82 MeV-cm ² /mg
All	SEL	+25°C	None	≤ 82 MeV-cm ² /mg
All	SEB	+25°C	None	≤ 82 MeV-cm ² /mg
All	SEGR	+25°C	None	<u><</u> 82 MeV-cm ² /mg

TABLE IB. SEP test limits. 1/

1/ For SEP test conditions, see 4.3.5.1.1.3 herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 10

Case outline X.

Case outline X - Continued.

Symbol	Millin	neters	Inc	hes
	Min	Max	Min	Max
Α		12.07		.475
D	88.90) REF	3.50	REF
D1		77.85		3.065
E		52.20		2.055
e1	63.37	63.63	2.495	2.505
e2/e5	5.05	5.33	.190	.210
e3	35.56	6 REF	1.400) REF
e4	14.99	15.49	.590	.610
F		2.03		.080
L/q7	6.1	6.6	.24	.26
L1	6.48	6.73	.255	.265
q	50.55	55.05	1.99	2.01
q1	27.69	28.19	1.09	1.11
q2	58.17	58.67	2.29	2.31
q3	11.18	11.68	.44	.46
q4	12.57	12.83	.495	.505
q5	9.91	10.41	.39	.41
q6	3.30	3.81	.13	.15
R		1.588		.0625
S	7.37	7.87	.290	.310
S1	12.45	12.95	.49	.51
Øb	0.89	1.14	.035	.045

NOTES:

- 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Lead identification for reference only.
- 3. Case outline weight: 125 grams maximum.

FIGURE 1. Case outline - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 12

Device type	All
Case outline	х
Terminal number	Terminal symbol
1	+V input
2	Input return
3	Inhibit
4	Inhibit return
5	Undervoltage latch
6	Case ground
7	Input current telemetry
8	Output adjust
9	- Sense
10	+ Sense
11	OVP adjust
12	Output return
13	+ Output voltage

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 13

Subgroups (in accordance with MIL-PRF-38534, group A test table)
1, 4
1*, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.

4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.

- 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DLA Land and Maritime-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) T_C as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.

4.3.5. <u>Radiation hardness assurance (RHA)</u>. RHA qualification is required only for those devices with the RHA designator as specified herein. See table IIIA and IIIB.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 14

RHA method employed	Active elements	Tes	sted	ed Worst Case Analysis Performed using extreme value analysis						End points after final dose						
	tested only as part of the hybrid device. Element Level I No Tested 1 1X a		Hybrid Device Level	Hybrid Device Level effects ra		Combines Co temperature and to radiation effects disp		Combines total dose and splacement effects	End-of-life	End-of-life Eleme Level		Hybrid device leve				
			Tested at 1.5X the specified TID rating			No		Yes	<u>1</u> / Yes	T _C = +25°C		T _C = -55⁰C +25⁰C and 85⁰C				
<u>1</u> / Worst o	case analysis	s performed	d with case Table III	temperatu B. <u>Hybrid I</u>	ure fr level	om -55°C to 8	5⁰C. evel	test table.								
Radiation	Test			-	Т	otal Dose			Heavy le	on	Pro	ton/Neutron				
			Low R	Dose ate	Hi Ra	igh Dose ate (HDR)	E Chara	LDRS	SEP		Dis Da	placement mage (DD)				
Hybrid Le	vel Testing		N Te	lot sted	k	Tested (150 trad(Si))	Not	performed	Tested (MeV-cm ² /	(82 ²/mg)		Tested (82 VeV-cm ² /mg)		Tested (82 N MeV-cm ² /mg) Te		Not Tested
Elemer Level Tes 1/	nt Mic ting	CMOS rocircuits	Not	Not tested Tested to 1.5X the level Not performed Not Tested specified Not performed Not Tested Not Tested		ed	Tested (1x10 ¹² n/cm									
<u> </u>	CMOS discrete (Power MOSFET)		Not 1	tested	Test ti s	ted to 1.5X he level pecified	Not performed		Tested (82 MeV-cm ² /mg)		32 Not ng) Tested					
	Bipo Semi	Bipolar Discrete Semiconductors		ested Tes tł		sted to 1X he level pecified	Not performed		Tested (hybrid level)		Tested (1x10 ¹² n/cm ²					
	Bipolar/BiCMOS Linear or Mixed Signal		S Not	tested	Tes ti s	sted to 1X he level pecified	Not performed		Tested (hybrid level)		vel) (1x10 ¹² n/cm ²					
<u>1</u> / Tř ind	ne device ma dicating the r	nufacturer nanufactur	either perf	orms the e ady perfor	leme	ent level testin the testing. S	g, or ee pa	purchases (aragraphs 4.	QML elemen 3.5.1.2.2 a.	ts with and 4	n doci	umentation 2.1 a.				
	S			G.		SIZE A					59	62-15224				
	WICKUC			9												

4.3.5.1 <u>Radiation Hardness Assurance (RHA) inspection</u>. RHA qualification is required for those devices with the RHA designator as specified herein. End-point electrical parameters for radiation hardness assurance (RHA) devices shall be specified in table IA. Radiation testing will be in accordance with the qualifying activity (DLA Land and Maritime-VQ) approved plan and with MIL-PRF-38534, Appendix G.

- a. The hybrid device manufacturer shall establish procedures controlling element radiation testing, and shall establish radiation test plans used to implement element lot qualification during procurement. Test plans and test reports shall be filed and controlled in accordance with the manufacturer's configuration management system.
- b. The hybrid device manufacturer shall designate a RHA program manager to oversee element lot qualification, and to monitor design changes for continued compliance to RHA requirements.

4.3.5.1.1 Hybrid level radiation qualification.

4.3.5.1.1.1 <u>Qualification by similarity</u>. A family is defined by the family model designator e.g. LSO single. All parts with this designator share a common design and use the same active elements with the exception of the output Schottky rectifiers. The LSO single1.5 V (device type 01), 1.8 V (device type 02), 2.5 (device type 03), 3.3 V (device type 04), 5 V (device type 05), 12 V (device type 06) and 15 V (device type 07) per this SMD are considered similar for the purpose of radiation testing. Device type 5962R1522404KXA (3.3 V) was tested for TID and SEP. Device types 5962R1522405KXA (5 V) and 5962R1522407KXA (15 V) were tested for SEP and all other devices on this SMD are RHA qualified by similarity.

4.3.5.1.1.2 <u>Total ionizing dose irradiation testing</u>. A minimum representative device of the hybrid family (family model designator, e.g. LSO single) is characterized and tested initially and after any design or process changes which may affect the RHA response of the device type. Devices are tested at High Dose Rate (HDR) in accordance with condition A of method 1019 of MIL-STD-883 to 150 krads(Si). The minimum sample size is two biased devices. Test results are compared to the limits specified in table IA after anneal at 100°C for 160 hours at nominal input voltage and full load.

4.3.5.1.1.3 <u>Single event phenomena (SEP)</u>. Representative devices 04 (3.3 V), 05 (5 V), and 07 (15 V) have been characterized for SEP response at initial qualification in accordance with ASTM F1192 and will be retested after any design or process changes which may affect the RHA response. Test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be normal to the die surface. No shadowing of the ion beam due to fixturing is allowed.
- b. The fluence shall be $\ge 1 \times 10^7$ particles/cm².
- c. The flux shall be between 10^2 and 10^5 ions/cm²/s.
- d. The particle range shall be \geq 50 micron in silicon.
- e. The initial characterization is performed at minimum, nominal and maximum input voltage, and with both minimum and maximum load. For future qualification the characterization will be performed only at worst case condition, maximum input voltage and maximum load. The test temperature shall be +25°C ±10 °C in air.
- f. For SEP test limits, see table IB herein.
- 4.3.5.1.2 Element level radiation qualification

4.3.5.1.2.1 <u>Technologies not being tested</u>. Testing is not performed on device technologies including: Junction Diodes, Schottky diodes, and zener diodes the manufacturer has determined to be radiation hardened.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 16

4.3.5.1.2.2 Total Ionizing Dose Irradiation. The manufacturer employs two methods of addressing TID.

- a. RHA QML die.
 - Active Elements are purchased as level L or R (as required by the device RHA designator) per MIL-PRF-38535 Standard Microcircuit Drawing (SMD) or MIL-PRF-19500 JAN specification sheet with electrical performance characteristics established for the elements at hybrid device design.
- b. Non RHA QML die. (including QML not-RHA die or die bought to a lower RLAT level than required by the hybrid device).
 - Bipolar discrete devices Ten biased samples from each initial wafer lot of active elements, except as noted in 4.3.5.1.2.1 will be characterized and tested at HDR in accordance with condition A of method 1019 of MIL-STD-750 to 100 krads(Si). Element parametric degradation test results are analyzed using 0.9900/90% statistics and compared to limits established for the elements at hybrid device design.
 - Bipolar/BiCMOS linear Ten biased samples from each initial wafer lot of microcircuit elements, except as noted in 4.3.5.1.2.1, will be characterized and tested at HDR in accordance with condition A of method 1019 of MIL-STD-883 to 100 krads(Si). Bipolar microcircuits are evaluated for ELDRS and tested accordingly. All MOS elements are subjected to 168 hours of accelerated anneal at 100°C. Element parametric degradation test results are analyzed using 0.9900/90% statistics and compared to limits established for the elements at hybrid device design.

4.3.5.1.3 <u>Neutron Irradiation</u>. The manufacturer employs two methods of addressing displacement damage due to neutron irradiation

a. All samples of CMOS, bipolar discrete, bipolar, BiCMOS, and linear or mixed signal integrated circuits described in 4.3.5.1.2.2 shall be tested to a minimum average integrated neutron fluence (1 MeV equivalent of 1x10¹² n/cm²) in accordance with method 1017 of MIL-STD-883 prior to TID testing. 0.9900/90% statistics are applied to the element parameter degradations which are compared to limits established for the element at hybrid device design

4.3.5.2 <u>Radiation lot Acceptance</u>. Each wafer lot of non-RHA QML active elements shall be evaluated for acceptance in accordance with MIL-PRF-38534 and herein except as noted in 4.3.5.1.2.1.

4.3.5.2.1 Total lonizing Dose Irradiation. The manufacturer employs two methods of addressing TID.

- a. RHA QML die.
 - Active Elements are purchased at the RLAT level (L or R) required by the hybrid device to a MIL-PRF-38535 (SMD) Standard Microcircuit Drawing or MIL-PRF-19500 JAN specification sheet with electrical performance characteristics established for the element at hybrid device design.
- b. Non RHA QML die.
 - 2 . Non RHA QML die (including QML not-RHA die or die bought to a lower RLAT level than required by the hybrid device). shall be tested as follows: Ten biased and two control samples from each wafer lot of active elements, except as noted in 4.3.5.1.2.1, will be characterized and tested at HDR in accordance with condition A of method 1019 of MIL-STD-883. The samples will be tested to 1X the rated value of the device (1.5X for MOS technology devices) for which it is purchased (R or L). 0.9900/90% statistics are applied to the element parametric degradations which are compared against limits established for the element at hybrid device design.

4.3.5.2.2 <u>Neutron Irradiation</u>. Every wafer lot of bipolar linear or mixed signal integrated circuit and semiconductor elements, except those purchased as RHA QML die will be tested to a minimum average integrated neutron fluence (1 MeV Si equivalent) of 1 x 10^{12} n/cm², in accordance with method 1017 of MIL-STD-883 using a minimum sample size of 10 samples. 0.9900/90% statistics are applied to the element parameter degradations which are compared to limits established for the elements at hybrid device design.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 17

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated as specified in MIL-PRF-38534.

6.4 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Post Office Box 3990, Columbus, Ohio 43218-3990, or telephone (614) 692-1081.

6.6 <u>Sources of supply</u>. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DLA Land and Maritime-VA and have agreed to this drawing.

6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA upset levels.
- b. Test conditions (SEP).
- c. Occurrence of latchup (SEL).
- d Occurrence of Burn-out (SEB).
- e. Occurrence of Gate Rupture (SEGR).
- f. Occurrence of Single Event Functional Interrupt (SEFI).
- g Occurrence of Single Event Upset (SEU).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15224
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 18

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 15-11-02

Approved sources of supply for SMD 5962-15224 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-1522401KXA 5962-1522401KXC 5962L1522401KXA 5962L1522401KXC 5962R1522401KXA 5962R1522401KXC	52467 52467 52467 52467 52467 52467 52467	LSO2801R5S LSO2801R5S LSO2801R5S LSO2801R5S LSO2801R5S LSO2801R5S LSO2801R5S
5962-1522402KXA 5962-1522402KXC 5962L1522402KXA 5962L1522402KXC 5962R1522402KXA 5962R1522402KXC	52467 52467 52467 52467 52467 52467 52467	LSO2801R8S LSO2801R8S LSO2801R8S LSO2801R8S LSO2801R8S LSO2801R8S LSO2801R8S
5962-1522403KXA 5962-1522403KXC 5962L1522403KXA 5962L1522403KXC 5962R1522403KXA 5962R1522403KXC	52467 52467 52467 52467 52467 52467 52467	LSO2802R5S LSO2802R5S LSO2802R5S LSO2802R5S LSO2802R5S LSO2802R5S LSO2802R5S
5962-1522404KXA 5962-1522404KXC 5962L1522404KXA 5962L1522404KXC 5962R1522404KXA 5962R1522404KXC	52467 52467 52467 52467 52467 52467 52467	LSO2803R3S LSO2803R3S LSO2803R3S LSO2803R3S LSO2803R3S LSO2803R3S LSO2803R3S
5962-1522405KXA 5962-1522405KXC 5962L1522405KXA 5962L1522405KXC 5962R1522405KXA 5962R1522405KXC	52467 52467 52467 52467 52467 52467 52467	LSO2805S LSO2805S LSO2805S LSO2805S LSO2805S LSO2805S LSO2805S
5962-1522406KXA 5962-1522406KXC 5962L1522406KXA 5962L1522406KXC 5962R1522406KXA 5962R1522406KXC	52467 52467 52467 52467 52467 52467 52467	LSO2812S LSO2812S LSO2812S LSO2812S LSO2812S LSO2812S LSO2812S

STANDARD MICROCIRCUIT DRAWING BULLETIN - Continued.

DATE: 15-11-02

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-1522407KXA 5962-1522407KXC 5962L1522407KXA 5962L1522407KXC 5962R1522407KXA 5962R1522407KXC	52467 52467 52467 52467 52467 52467	LSO2815S LSO2815S LSO2815S LSO2815S LSO2815S LSO2815S LSO2815S

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u> Vendor name and address

52467

International Rectifier 2520 Junction Ave. San Jose, CA 95134

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.