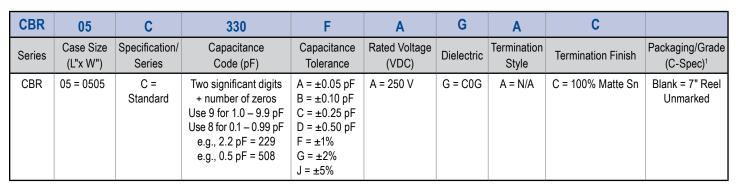
Surface Mount Multilayer Ceramic Capacitors (SMD MLCCs) for High Power Applications Ultra HiQ-CBR Squared Series, C0G Dielectric, Low ESR 250 VDC, 1 MHz – 50 GHz (RF & Microwave)

Overview

KEMET's Ultra HiQ-CBR 0505 Series surface mount multilayer ceramic capacitors (MLCCs) in C0G dielectric feature a robust and exceptionally stable copper electrode dielectric system as well as a square case size that offers excellent low loss performance (ultra high Q). These devices provide extremely low ESR and high self-resonance characteristics, and are well-suited for higher power applications where minimal heating due to I²R losses are a factor. CBR Series capacitors exhibit no change in capacitance with respect to time and voltage, and boast a negligible change in capacitance with reference to


ambient temperature. Capacitance change is limited to ± 30 ppm/ °C from -55 °C to +125 °C.

CBR Series devices are suitable for many circuit applications including RF power amplifiers, mixers, oscillators, low noise amplifiers, filter networks, antenna tuning, timing circuits, delay lines, and MRI imaging coils.

Benefits

- · Ultra high Q and extremely low ESR
- 0505 Square case size for higher SRF versus standard EIA case sizes
- High thermal stability
- 1 MHz to 50 GHz frequency range
- Operating temperature range of -55°C to +125°C
- Base metal electrode (BME) dielectric system
- Pb-free and RoHS compliant
- DC voltage rating of 250 V
- Capacitance offerings ranging from 0.4 pF up to 100 pF
- Available capacitance tolerances of ± 0.05 pF, ± 0.1 pF, ± 0.25 pF, ± 0.5 pF, $\pm 1\%,$ $\pm 2\%,$ and $\pm 5\%$

Ordering Information

¹ When ordering CBR Series devices, a "suffix" or "C-Spec" is not required to indicate a 7" reel packaging option. CBR devices are only available and shipped on 7" reels (paper tape). Bulk bag and cassette packaging options are not available. Please contact KEMET if you have a specific, non-standard packaging requirement.

Benefits cont'd

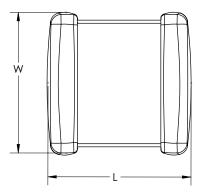
- · No piezoelectric noise
- No capacitance change with respect to applied rated DC voltage 100% pure matte tin-plated termination finish allowing for
- · Negligible capacitance change with respect to temperature
- · No capacitance decay with time

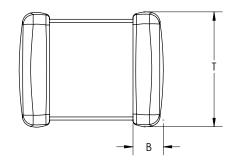
- Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability

Applications

Typical applications include critical timing, tuning, bypass, coupling, feedback, filtering, impedance matching and DC blocking.

Field applications include wireless and cellular base stations, wireless LAN, subscriber-based wireless services, wireless broadcast equipment, satellite communications, RF power amplifier (PA) modules, filters, voltage-controlled oscillators (VCOs), PAs, matching networks, RF modules, satellite communications and medical electronics.


Qualification


RF and microwave products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Environmental Compliance

Pb-free and RoHS compliant.

Dimensions – Millimeters (Inches)

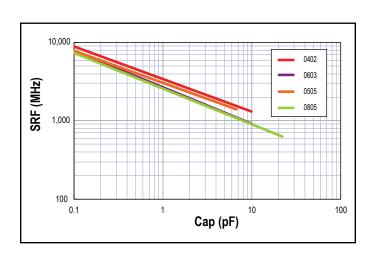
Case Size	Case Size	L	W	T	B	Mounting
(in.)	(mm)	Length	Width	Thickness	Bandwidth	Technique
0505	1414	1.40 +0.38 / -0.25 (0.055 +0.015 / -0.01)	1.40 ± 0.38 (0.055 ± 0.015)	1.15 ± 0.15 (0.045 ± 0.006)	0.25 + 0.25 - 0.13 (0.010 + 0.010 - 0.005)	Solder Reflow Only

Electrical Parameters/Characteristics

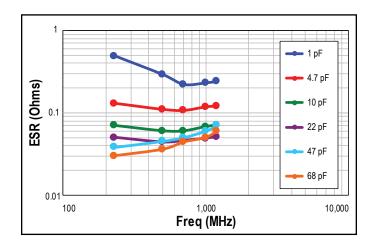
Item	Parameters/Characteristics
Operating Temperature Range:	−55°C to +125°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC):	0 ±30 ppm/°C
Aging Rate (Maximum % Capacitance Loss/Decade Hour):	0%
¹ Dielectric Withstanding Voltage (DWV):	See Dielectric Withstanding Voltage Table (5 ±1 seconds and charge/discharge not exceeding 50 mA)
² Quality Factor (Q):	≥ 1,400 for capacitance values ≥30 pF ≥ 800 + 20°C for capacitance values < 30 pF
³ Insulation Resistance (IR) Limit @ 25°C:	10 G Ω minimum (rated voltage applied for 120 ± 5 seconds)

¹ DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor. ² Capacitance and quality factor (Q) measured at 1 MHz ±100 kHz and 1.0 ±0.2 Vrms.

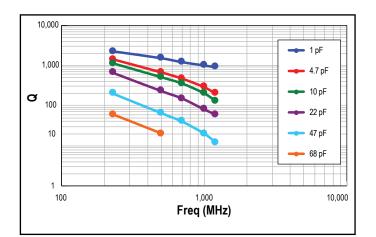
³ To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to G Ω limit. Select the lower of the two limits.


Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Dielectric Withstanding Voltage Table


Rated Voltage (VDC)	250 V
DWV	200%

Electrical Characteristics



SRF (MHz) vs. Cap (pF)

ESR vs. Frequency 0505

Q vs. Frequency 0505

Table 1 – CBR Series, Capacitance Range Waterfall

Case Size –	0505 (1414)						
Length	mm (Inches)	1.40 +0.38 / -0.25 (0.055 +0.015 / -0.01)					
Width	mm (Inches)	1.40 ± 0.38 (0.055 ± 0.015)					
Thickness	mm (Inches)	1.15 ± 0.15 (0.045 ± 0.006)					
Bandwidth	mm (Inches)	0.25 + 0.25 - 0.13 (0.010 + 0.010 - 0.005)					
Rated Volt		250					
	Voltage Code						
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)					
0.4 pF		408					
0.5 pF		508					
0.6 pF 0.7 pF		608 708					
0.8 pF		808					
0.9 pF		908					
1.0 pF		109					
1.1 pF		119					
1.2 pF		129					
1.3 pF		139					
1.4 pF		149					
1.5 pF 1.6 pF		169					
1.0 pr 1.7 pF		179					
1.8 pF 1.9 pF		189					
		199					
2.0 pF		209					
2.1 pF		219					
2.2 pF		229					
2.3 pF 2.4 pF		239					
2.4 pF 2.5 pF		249					
2.6 pF	$A = \pm 0.05 pF$	269					
2.7 pF	$B = \pm 0.10 pF$	279					
2.8 pF	$C = \pm 0.25 pF$ $D = \pm 0.50 pF$	289					
2.9 pF	D - 10.00pi	299					
3.0 pF		309					
3.1 pF		319					
3.2 pF 3.3 pF		329 339					
3.4 pF		349					
3.5 pF		359					
3.6 pF		369					
3.7 pF		379					
3.8 pF		389					
3.9 pF		399					
4.0 pF 4.1 pF		409 419					
4.1 pr 4.2 pF		419					
4.3 pF		439					
4.4 pF		449					
4.5 pF		459					
4.6 pF		469					
4.7 pF		479					
4.8 pF 4.9 pF		489 499					
4.9 pr 5.0 pF		509					
Rated Volt	age (VDC)	250					

* Available only in "B" (±0.1 pF) capacitance tolerance.

Table 1 – CBR Series, Capacitance Range Waterfall cont'd

Case Size –	Inches (mm)	0505 (1414)	
Length	mm (Inches)	1.40 +0.38 / -0.25 (0.055 +0.015 / -0.01)	
Width	mm	1.40 ± 0.38	
Thickness	(Inches) mm	(0.055 ± 0.015) 1.15 ± 0.15	
	(Inches) mm	(0.045 ± 0.006) 0.25 + 0.25 - 0.13	
Bandwidth	(Inches)	(0.010 + 0.010 - 0.005)	
	tage (VDC)	250	
voitag	e Code	A	
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)	
5.1 pF 5.2 pF		519 529	
5.2 pF 5.3 pF		539	
5.4 pF		549	
5.5 pF		559	
5.6 pF		569	
5.7 pF		579	
5.8 pF		589	
5.9 pF		599 609	
6.0 pF 6.1 pF		619	
6.2 pF		629	
6.3 pF		639	
6.4 pF		649	
6.5 pF		659	
6.6 pF		669	
6.7 pF		679	
6.8 pF		689	
6.9 pF		699	
7.0 pF 7.1 pF		709 719	
7.2 pF	B = ±0.10pF	729	
7.3 pF	$C = \pm 0.25 pF$	739	
7.4 pF	$D = \pm 0.50 pF$	749	
7.5 pF		759	
7.6 pF		769	
7.7 pF		779	
7.8 pF		789	
7.9 pF		799	
8.0 pF 8.1 pF		809 819	
8.2 pF		829	
8.3 pF		839	
8.4 pF		849	
8.5 pF		859	
8.6 pF		869	
8.7 pF		879	
8.8 pF		889	
8.9 pF 9.0 pF		899 909	
9.1 pF		919	
9.2 pF		929	
9.3 pF		939	
9.4 pF		949	
9.5 pF		959	
Rated Volt	tage (VDC)	250	
	e Code	А	

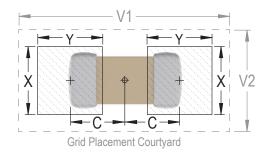
Table 1 – CBR Series, Capacitance Range Waterfall cont'd

Case Size –	Inches (mm)	0505 (1414)
Length	mm (Inches)	1.40 +0.38 / -0.25 (0.055 +0.015 / -0.01)
	mm	1.40 ± 0.38
Width	(Inches)	(0.055 ± 0.015)
T I : 1	mm	1.15 ± 0.15
Thickness	(Inches)	(0.045 ± 0.006)
Bandwidth	mm	0.25 + 0.25 - 0.13
Danuwiutii	(Inches)	(0.010 + 0.010 - 0.005)
Rated Vol	tage (VDC)	250
Voltag	A	
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)
9.6 pF		969
9.7 pF		979
9.8 pF		989
9.9 pF		999
10 pF		100
11 pF	_	110
12 pF	-	120
13 pF	-	130
15 pF	-	150
16 pF		160
18 pF	-	180
20 pF	-	200
22 pF	F = ±1%	220
24 pF 27 pF	$F = \pm 1\%$ G = $\pm 2\%$	240
30 pF	$J = \pm 5\%$	300
33 pF	0 - 10/0	330
36 pF		360
39 pF		390
43 pF	-	430
47 pF		470
51 pF	1	510
56 pF		560
62 pF		620
68 pF		680
75 pF		750
82 pF		820
91 pF		910
100 pF		101
Rated Vol	tage (VDC)	250
Voltag	e Code	Α

Table 2 – Chip Thickness/Reeling Quantities

Chip Size	Chip Thickness	Reel Quantity				
Inches (mm)	(mm)	7" Paper	13" Paper			
0505 (1414)	1.15 ±0.15	3,000	Contact KEMET for availability.			

Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC–7351 (mm)


Case Size (Inches)	Case Size (mm)	1	Maximu	sity Lev ım (Mos rotrusio	st) Land	ł	N	Density Level B: Median (Nominal) Land Protrusion				Density Level C: Minimum (Least) Land Protrusion					
(1101100)		С	Y	Х	V1	V2	С	Y	Х	V1	V2	С	Y	Х	V1	V2	
0505	1414	0.92	1.15	1.89	3.99	2.89	0.82	0.95	1.79	3.09	2.29	0.72	0.75	1.69	2.43	1.93	

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of 0603(1608) and 0805 (2012) case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes.

Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).

Image below based on Density Level B for an EIA 1608 case size.

Soldering Process

Recommended Soldering Technique:

• 0505 case sizes are limited to solder reflow only

Recommended Soldering Profile:

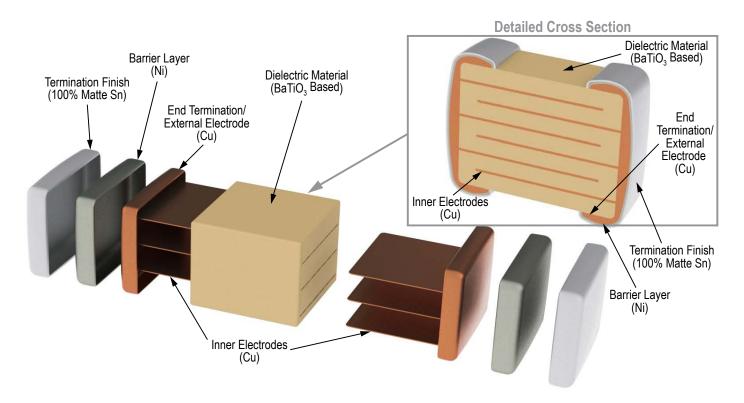
• KEMET recommends following the guidelines outlined in IPC/JEDEC J-STD-020

Recommended Solder Alloys:

Alloy	Composition	Solidus	Liquidous
In50	50 In, 50 Pb	180°C	209°C
In52	52 In, 48 Sn	118°C	118°C
Sn62	62.5 Sn, 36.1 Pb, 1.4 Ag	179°C	179°C
Sn63	63 Sn, 37 Pb	183°C	183°C
Pb-Free	95.5 Sn, 3.8 Ag, 0.7 Cu	217°C	217°C
Hi-Temp	5 Sn, 93.5 Pb, 1.5 Ag	296°C	301°C
Sn5	5 Sn, 95 Pb	308°C	312°C

Table 4 – Performance & Reliability: Test Methods & Conditions

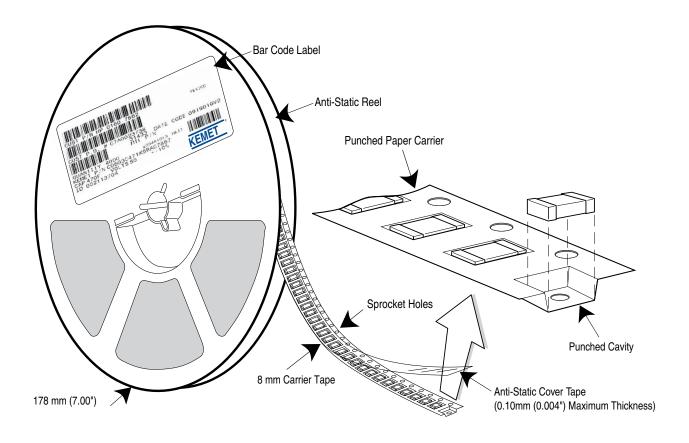
Stress	Test or Inspection Method	Requirements
Terminal Strength	Pressurizing force: 0505 case sizes: 5N Test time: 10 ±1 second	No visible damage or separation of termination system.
Vibration Resistance	Vibration frequency: 10 ~ 55 Hz/minimum Total amplitude: 1.5 mm Test time: 6 hours (Two hours each in three mutually perpendicular directions.)	No visible damage. Capacitance change and Q/DF: To meet initial specification
Solderability	Solder temperature: $235 \pm 5^{\circ}$ C Dipping time: 2 ± 0.5 seconds	95% minimum coverage of termination finish.
Board Flex	Capacitor is mounted to a substrate which is flexed by means of ram at a rate of 1 mm per second until the deflection becomes 1 mm. (Deflection is maintained for 5 ± 1 second) Store at room temperature for 24 ± 2 hours before measuring electrical properties.	No visible damage. Capacitance change: within ±5.0% or ±0.5 pF, whichever is larger. (Capacitance change is monitored during flexure.)
Resistance to Soldering Heat	Solder temperature: 260 ±5°C Dipping time: 10 ±1 second Preheating: 120 to 150°C for 1 minute before immerse the capacitor in a eutectic solder. Store at room temperature for 24 ±2 hours before measuring electrical properties.	No visible damage. Capacitance change: within ±2.5% or ±0.25 pF, whichever is larger. Q/DF, IR and dielectric strength: To meet initial requirements. 25% maximum leaching on each edge.
Temperature Cycling	5 cycles of steps 1 - 4:StepTemp. (°C)Time (min.)1Minimum operating temp. $\pm 0/-3$ 30 ± 3 2Room temp $2 \sim 3$ 3Maximum operating temp. $\pm 3/-0$ 30 ± 3 4Room temp (25° C) $2 \sim 3$ Store at room temperature for 24 ± 2 hours before measuring electrical properties.	No visible damage. Capacitance change: within ±2.5% or ±0.25 pF, whichever is larger. Q/DF, IR and dielectric strength: To meet initial requirements.
Humidity (Damp Heat) Steady State	Test temperature: 40 ±2°C Humidity: 90 ~ 95% RH Test time: 500 +24/-0 hours Store at room temperature for 24 ±2 hours before measuring electrical properties.	No visible damage. Capacitance change: within $\pm 5.0\%$ or ± 0.5 pF, whichever is larger. Q/DF value: Capacitance ≥ 30 pF, Q ≥ 350 , 10 pF \leq Capacitance < 30 pF, Q $\geq 275 + 2.5^{\circ}$ C Capacitance < 10 pF; Q $\geq 200 + 10^{\circ}$ C IR: $\geq 1G\Omega$
Humidity (Damp Heat) Load	Test temperature: 40 ±2°C Humidity: 90 ~ 95% RH Test time: 500 +24/-0 hours Applied voltage: rated voltage Store at room temperature for 24 ±2 hours before measuring electrical properties.	No visible damage. Capacitance change: within ±7.5% or ±0.75 pF, whichever is larger. Q/DF value: Capacitance ≥ 30 pF, Q ≥ 200, Capacitance < 30 pF, Q ≥ 100+10/3°C IR: ≥ 500MΩ
High Temperature Life	Test temperature: 125 ±3°C Applied voltage: 200% of rated voltage (6.3 VDC - 250 VDC) Test time: 1,000 +24/-0 hours Store at room temperature for 24 ±2 hours before measuring electrical properties.	No visible damage.Capacitance change: within ±3.0% or ±0.3 pF, whichever is larger.Q/DF value: Capacitance ≥ 30 pF, Q ≥350,10 pF ≤ Capacitance < 30 pF, Q ≥ 275 +2.5°C
ESR	The ESR should be measured at room temperature and tested at frequency 1 ± 0.1 GHz.	0505 Case Size 0.4pF ≤Capacitance <1.0pF: < 1500mΩ


© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com

Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp, and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C, and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts, and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability, chip stock should be used promptly, preferably within 1.5 years of receipt.

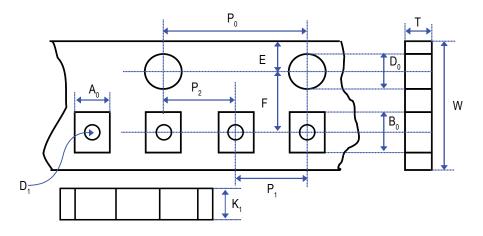
Construction


Marking

Hi CBR series devices are supplied unmarked. If you require marked product, please contact KEMET for availablility of a laser-marked option.

Tape & Reel Packaging Information

KEMET offers RF and Microwave Multilayer Ceramic Chip Capacitors packaged in 8 mm tape on 7" reels. This packaging system is compatible with all tape-fed automatic pick and place systems.


Table 5 – Carrier Tape Configuration (mm)

EIA Case Size	Tape Size (W)*	Pitch (P ₁)*
0505	8	4

*Refer to Figure 1 & 2 for W and P₁ carrier tape reference locations. *Refer to Table 6 for tolerance specifications.

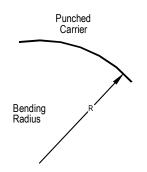
Figure 1 – Punched (Paper) Carrier Tape Dimensions

Table 6 – Punched (Paper) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)												
Tape Size D ₀			E	P ₀ P ₂		R Refere	ence Note 1	K ₀					
8 mm				2.0 ±0.0 (0.079 ±0.0			Maximum 1.5 (Maximum 0.060)						
		١	/ariable Dime	nsions — Millir	neters (Inches	5)							
Tape Size	Pitch	A ₀	B ₀	F	P ₁	Т	W	D ₁					
8 mm	Single (4 mm)	Maximum 1.9 (Maximum 0.075)	Maximum 1.90 (Maximum 0.075)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.1 (0.157 ±0.004)	0.23±0.1 (0.009 ±0.004)	8.0 ±0.2 (0.315 ±0.0						

1. The tape with or without components shall pass around R without damage (see Figure 3).


Packaging Information Performance Notes

- **1. Cover Tape Break Force:** 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength	
8 mm	0.1 to 1.0 Newton (10 to 100 gf)	
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)	

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute. **3. Labeling:** Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards* 556 *and* 624.

Figure 2 – Bending Radius

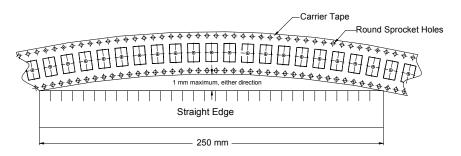


Figure 3 – Tape Leader & Trailer Dimensions

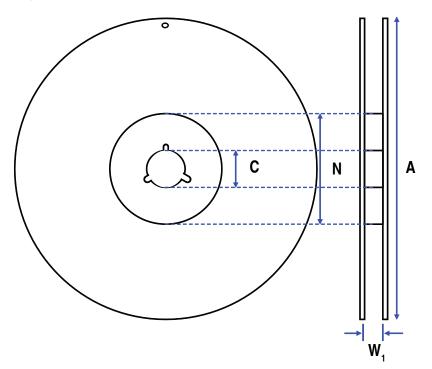


Figure 4 – Maximum Camber

Figure 5 – Reel Dimensions

Table 7 – Reel Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)				
Tape Size	Reel Size	A	С	
8 mm	7	178 ±0.10 (7.008 ±0.004)	13.0 ±0.50 (0.512 ±0.02)	
Variable Dimensions — Millimeters (Inches)				
Tape Size	N Minimum See Note 2, Table 6	W ₁		
8 mm	60 ±1.0 (2.362 ±0.04)	8.4 +1.5/ -0.0 (0.331 +0.059/ -0.0)		

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices Fort Lauderdale, FL Tel: 954-766-2800

North America

Northeast Wilmington, MA Tel: 978-658-1663

Southeast Lake Mary, FL Tel: 407-855-8886

Central Novi, MI Tel: 248-994-1030

Irving, TX Tel: 972-915-6041

West Milpitas, CA Tel: 408-433-9950

Mexico Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe Sasso Marconi, Italy Tel: 39-051-939111

Skopje, Macedonia Tel: 389-2-55-14-623

Central Europe Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe Wyboston, United Kingdom Tel: 44-1480-273082

Espoo, Finland Tel: 358-9-5406-5000

Asia

Northeast Asia Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China Tel: 86-10-5877-1075

Shanghai, China Tel: 86-21-6447-0707

Seoul, South Korea Tel: 82-2-6294-0550

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia Singapore Tel: 65-6701-8033

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.