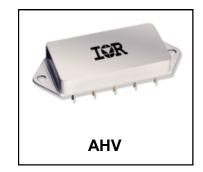


AHV28XX SERIES

HYBRID-HIGH RELIABILITY DC-DC CONVERTER

28V Input, Single, Dual and Triple Output


Description

The AHV Series of DC-DC converters are designed to replace the AHE/ATO family of converters in applications requiring compliance to MIL-STD-704A through E, in particular the input surge requirement of 80V specified to withstand transient input voltage of 80V. No input voltage or output power derating is necessary over the full military temperature range.

These converters are packaged in an extremely rugged, low profile package that meets all requirements of MILSTD-883 and MIL-PRF-38534. Parallel seam weld sealing and the use of ceramic pin feed thru seals assure long term hermeticity after exposure to extended temperature cycling.

The basic circuit is a push-pull forward topology using power MOSFET switches. The nominal switching frequency is 500kHz. A unique current injection circuit assures current balancing in the power switches. All AHV series converters use a single stage LC input filter to attenuate input ripple current. A low power 11.5V series regulator provides power to an epitaxial CMOS custom pulse width modulator integrated circuit. This single integrated circuit provides all PWM primary circuit functions. Power is transferred from primary to secondary through a ferrite core power transformer. An error voltage signal is generated by comparing a highly stable reference voltage with the converter output voltage and drives the PWM through a unique wideband magnetic feedback circuit. This proprietary feedback circuit provides an extremely wide bandwidth, high gain control loop, with high phase margin. The feedback control loop gain is insensitive to temperature, radiation, aging, and variations in manufacturing. The transfer function of the feedback circuit is a function of the feedback transformer turns ratio which cannot change when subjected to environmental extremes.

Manufactured in a facility fully qualified to MIL-PRF-38534, these converters are fabricated utilizing DLA qualified processes. For available screening options, refer to device screening table in the data sheet. Variations in electrical, mechanical and screening can be accommodated. Contact IR San Jose for special requirements.

Features

- 80V Transient Input (100 msec max.)
- 50VDC Input (Continous)
- 16V to 40VDC Input Range
- Single, Dual and Triple Outputs
- 15W Output Power (No Temperature Derating)
- Low Input / Output Noise
- Full Military Temperature Range
- Wideband PWM Control Loop
- Magnetic Feedback
- Low Profile Hermetic Package (0.405")
- Short Circuit and Overload Protection
- Constant Switching Frequency (500kHz)
- True Hermetic Package (Parallel Seam Welded, Ceramic Pin Feedthru)
- Standard Microcircuit Drawings Available

Specifications (Single Output Models)

T_{CASE} = -55°C to +125°C, V_{IN} = +28V ±5% unless otherwise specified

Absolute Maximum Ratings

Input voltage	-0.5V to +50VDC (Continous), 80V (100 msec)
Power output	Internally limited, 17.5W typical
Soldering temperature	300°C for 10 seconds (1 pin at a time)
Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +135°C

TEST	SYMBOL	$V_{\rm IN} = 28 V_{\rm DC} \pm 5\%$, $C_{\rm L} = 0$, Subgroups		2805S	AHV	2812S	AHV2815S			
		unless otherwise specified		Min	Max	Min	Max	Min	Max	Units
STATIC CHARACTERISTICS										
OUTPUT	V _{OUT}	V _{IN} = 16, 28, and 40 VDC	1	4.95	5.05	11.88	12.12	14.85	15.15	V
Voltage		$I_{OUT} = 0$	2,3	4.90	5.10	11.76	12.24	14.70	15.30	V
Current	I _{OUT}	V _{IN} = 16, 28, and 40 VDC	1,2,3	0.0	3.00	0.0	1.25	0.0	1.00	A
Ripple Voltage ¹	V _{RIP}	V _{IN} = 16, 28, and 40 VDC BW = DC to 1 MHz	1,2,3		60		60		60	mVp-p
Power	Pout	$V_{IN} = 16, 28, and 40 VDC$	1,2,3	15		15		15		w
REGULATION		V _{IN} = 16, 28, and 40 VDC								
Line	VRLINE	I_{OUT} = 0, half load and full load	1	-5.0	5.0	-30	30	-35	35	
		V _{IN} = 16, 28, and 40 VDC	2,3	-25	25 50	-60	60	-75	75	mV
Load	VRLOAD	I_{OUT} = 0, half load and full load	1,2,3	-50	50	-120	120	-150	150	
INPUT		I _{OUT} = 0, Inhibit (pin 2) = 0	1,2,3		18		18		18	mA
Current	I _{IN}	$I_{OUT} = 0$, Inhibit (pin 2) = 0 $I_{OUT} = 0$, Inhibit (pin 2) = Open	1,2,3		50		50		50	mA
Ripple Current	I _{RIP}	$I_{OUT} = Full load$	1,2,3,		50		50		50	mAp-p
EFFICIENCY	E _{FF}	I_{OUT} = Full Load T _C = +25°C	1	72		72		72		%
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC, $T_c = +25^{\circ}C$	1	100		100		100		MΩ
Capacitive Load ^{2,3}	CL	No effect on DC performance $T_{C} = +25^{\circ}C$	4		500		200		200	μF
Load Fault Power Dissipation	P _D	Overload, $T_c = +25^{\circ}C^4$ Short Circuit, $T_c = +25^{\circ}C$	1		10 10		10 10		10 10	W
Switching Frequency	Fs	I _{OUT} = Full Load	4	450	550	450	550	450	550	KHz
DYNAMIC CHARACTERISTICS Step Load Changes	VOT _{LOAD}	50% Load From/To 100% Load	4	-300	+300	-300	+300	-300	+300	mVpk
Output Transient ⁵		No Load From/To 50%	4	-500	+500	-750	+750	-750	+750	mVpk
	TT _{LOAD}	50% Load From/To 100%	4		70		70		70	μs
Recovery ^{5,6}		No Load From/To 50% Load	4		200		1500		1500	μs
		50% Load From/To No ILoad	4		5.0		5.0		5.0	ms
Step Line Changes		Input step 16 to 40 VDC 3,7	4		300		500		500	mVpk
Output Transient	VOTLINE	Input step 40 to 16 VDC ^{3,7}	4		-1000		-1500		-1500	mVpk
_	I	Input step 16 to 40 VDC 3,6,7	4		800		800		800	μs
Recovery	TT _{LINE}	Input step 40 to 16 VDC 3,6,7	4		800		800		800	μs
TURN-ON										
Overshoot	VTon _{os}	$I_{OUT} = 0A$ and Full Load	4,5,6		550		750		750	mVpk
Delay	T on D	I _{OUT} = 0A and Full Load ⁸	4,5,6		10		10		10	ms
Load Fault Recovery	TR _{LF}	V _{IN} = 16 to 40 VDC	4,5,6		10		10		10	ms

Notes: To Specifications (Single Output Models)
Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.
An overload is that condition with a load in excess of the rated load but less than necessary to trigger the short circuit protection and is the condition of maximum power dispertence.

dissipation. Load step transition time between $2\mu s$ to 10 μs . 5

Recovery time is measured from the initiation of the transient to where VOUT has returned to within ±1% of VOUT at 50% load. 6

7. 8.

Input step transition time between 2µs and 10µs. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhinbit pin (pin 2) while power is applied to the input. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.

Specifications (Dual Output Models)

 T_{CASE} = -55°C to +125°C, V_{IN} = +28V ±5% unless otherwise specified

Absolute Maximum Ratings

Input voltage	-0.5V to +50VDC (Continous), 80V (100 msec)
Power output Internally limited, 17.5W typical	
Soldering temperature	300°C for 10 seconds (1 pin at a time)
Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +135°C

TEST	SYMBOL	Condition -55°C ≤ T _C ≤ +125°C, V _{IN} = 28 V _{DC} ±5%, C _L =0,	Group A Subgroups	AHV	2805D	AHV	2812D	AHV	2815D	
		unless otherwise specified		Min	Max	Min	Max	Min	Мах	Units
STATIC CHARACTERISTICS OUTPUT										
Voltage ¹ Current ^{1,2} Ripple Voltage ^{1,3}	V _{OUT} I _{OUT} V _{RIP}	$I_{OUT} = 0$ V _{IN} = 16, 28, and 40 VDC V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz	1 2,3 1,2,3 1,2,3	±4.95 ±4.90 0.0	±5.05 ±5.10 ±1500 60	±11.88 ±11.76 0.0	±12.12 ±12.24 ±625 60	±14.85 ±14.70 0.0	±15.15 ±15.30 ±500 60	V V mA mVp-p
Power ^{1,2,4}	POUT	V_{IN} = 16, 28, and 40 VDC	1,2,3	15		15		15		W
REGULATION Line ^{1,5} Load ¹	VR _{line} I _{out} VR _{load}	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = 16, 28, \text{ and } 40 \text{ VDC} \\ I_{\text{OUT}} = 0, \text{ half load and full load} \\ V_{\text{IN}} = 16, 28, \text{ and } 40 \text{ VDC} \\ I_{\text{OUT}} = 0, \text{ half load and full load} \end{array}$	1 2,3 1,2,3	-30 -60 -120	30 60 120	-30 -60 -120	30 60 120	-35 -75 -150	35 75 150	mV
INPUT Current	l _{iN}	I _{OUT} = 0, Inhibit (pin 2) Tied to input return (pin 10) I _{OUT} = 0, Inhibit (pin 2) = Open	1,2,3		18		18		18	mA
Ripple Current ³	I _{RIP}	$I_{OUT} = 0$, infiniti (pin 2) = Open $I_{OUT} = Full loadBW = DC to 2MHz$	1,2,3,		65 50		65 50		65 50	mA mAp-p
EFFICIENCY	E _{FF}	l _{ou⊤} = Full Load T _c = +25°C	1	72		72		72		%
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC, $T_c = +25^{\circ}C$	1	100		100		100		MΩ
Capacitive Load ^{6,7}	CL	No effect on DC performance $T_c = +25^{\circ}C$	4		200		200		200	μF
Load Fault Power Dissipation	P _D	Overload, $T_c = +25^{\circ}C^{8}$ Short Circuit, $T_c = +25^{\circ}C$	1		10 10		10 10		10 10	W
Switching Frequency	Fs	I _{OUT} = Full Load	4	450	550	450	550	450	550	kHz
DYNAMIC CHARACTERISTICS Step Load Changes Output Transient ⁹ Recovery ^{9,10}	VOT _{LOAD} TT _{LOAD}	50% Load From/To 100% Load No Load From/To 50% 50% Load From/To 100% No Load From/To 50% Load 50% Load From/To No ILoad	4 4 4 4 4	-300 -500	+300 +500 70 1000 5.0	-300 -500	+300 +500 70 1500 5.0	-300 -500	+300 +500 70 1500 5.0	mVpk mVpk μs μs ms
Step Line Changes Output Transient ^{7,11} Recovery ^{7,10, 11}	VOT _{LINE} TT _{LINE}	Input step 16 to 40 VDC Input step 40 to 16 VDC Input step 16 to 40 VDC Input step 40 to 16 VDC	4 4 4 4		300 1000 4800 4800		1200 -1500 4.0 4.0		1500 -1500 4.0 4.0	mVpk mVpk μs μs
TURN-ON Overshoot ¹ Delay ^{1,12}	VTon _{os} T on D	I _{OUT} = 0A and Full Load I _{OUT} = 0A and Full Load	4,5,6 4,5,6		750 10		600 10		600 10	mVpk ms
Load Fault Recovery ⁷	TR _{LF}		4,5,6		10		10		10	ms

For Notes to Specifications, refer to page 5

Specifications (Triple Output Models)

 T_{CASE} = -55°C to +125°C, V_{IN} = +28V ±5% unless otherwise specified

Absolute Maximum Ratings

Input voltage	-0.5V to +50VDC (Continous), 80V (100 msec)								
Power output	Internally limited, 17.5W typical								
Soldering temperature 300°C for 10 seconds (1 pin at a time)									
Operating case temperature -55°C to +125°C									
Storage case temperature	-65°C to +135°C								

TEST	SYMBOL	Condition -55°C ≤ T _C ≤ +125°C, V _{IN} = 28 V _{PC} ±5%, C _L =0,	Group A Subgroups	AH	AHV2812T		AHV2815T	
	unless otherwise specified		Min	Мах	Min	Max	Units	
STATIC CHARACTERISTICS OUTPUT								
Voltage ¹	V _{OUT}	I _{OUT} = 0 (main)	1 2,3	4.95 4.90	5.05 5.10	4.95 4.90	5.05 5.10	V V
	•001	$I_{OUT} = 0 (dual)^1$	1 2,3	±11.88 ±11.76	±12.12 ±12.24	±14.85 ±14.70	±15.15 ±15.30	V V
Current ^{1,2,3}	I _{OUT}	V _{IN} = 16, 28, and 40 VDC (main)	1,2,3	100	2000	100	2000	mA
Ripple Voltage ^{1,4}	V _{RIP}	V _{IN} = 16, 28, and 40 VDC (dual) ¹ V _{IN} = 16, 28, and 40 VDC	1,2,3 1,2,3	0.0	±208 80	0.0	±167 80	mA mVp-p
		BW = DC to 2 MHz (main) V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (main)	1,2,3		40		40	MVp-p
Power ^{1,2,3}	Pout	V _{IN} = 16, 28, and 40 VDC (main) (+dual) (-dual)	1,2,3 1,2,3 1,2,3	10 2.5 2.5		10 2.5 2.5		W W W
REGULATION		(total)	1,2,3	15		15		W
Line ^{1,3}	VR _{LINE}	V _{IN} = 16, 28, and 40 VDC I _{OUT} = 5%, 50%, and 100% load (main) I _{OUT} = 0, 50%, and 100% load (dual)	1,2,3 1	- 25 -30 -60	25 30 60	- 25 -35 -75	25 35 75	mV
Load ^{1,3}		V _{IN} = 16, 28, and 40 VDC I _{OUT} = 5%, 50%, and 100% load (main) I _{OUT} = 0, 50%, and 100% load (dual)	2,3 1,2,3 1,2,3	-50 -50 -60	50 60	-75 -50 -75	50 75	IIIV
INPUT								
Current	l _{IN}	I _{OUT} = 0, Inhibit (pin 8) Tied to input return (pin 10) I _{OUT} = 0	1,2,3 1,2,3		15 50		15 50	mA mA
Ripple Current ⁴	la s	Inhibit (pin 2) = open I _{OUT} = 2000 mA (main) I _{OUT} = ±208mA (±12V)	1,2,3		50		50	mAp-p
	I _{RIP}	I _{OUT} = ±167mA (±15V) BW = DC to 2MHz						
EFFICIENCY	E _{FF}	I _{OUT} = 2000mA (main) I _{OUT} = ±208mA (±12V) I _{OUT} = ±167mA (±15V)	1	72		72		%
ISOLATION	ISO	Input to output or any pin to case (except pin 7) at 500 VDC, $T_{C} = +25^{\circ}C$	1	100		100		MΩ
Capacitive Load ^{6,7}	CL	No effect on DC performance T _c = +25°C (main) (dual)	4		500 200		500 200	mF
Load Fault Power Dissipation ³	P _D	Overload, $T_C = +25^{\circ}C^5$ Short Circuit, $T_C = +25^{\circ}C$	1 1		10 10		10 10	w
Switching Frequency ¹	Fs	I _{OUT} = 2000mA (main) I _{OUT} = ±208mA (±12V) I _{OUT} = ±167mA (±15V)	4	450	550	450	550	KHz

For Notes to Specifications, refer to page 5

Specifications (Triple Output Models) - continued

TEST	SYMBOL	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		AHV2812T		AHV2815T			
				Min	Max	Min	Max	Units	
DYNAMIC CHARACTERISTICS									
Step Load Changes Output Transient ⁹		50% Load To/From100% Load	4	-300	+300	-300	+300	mVpk	
Recovery ^{9,10}	VOT _{LOAD}	Min To/From 50% Load 50% Load To/From 100%	4	-400	+400 100	-400	+400 100	mVpk μs	
	TT _{LOAD}	Min to 50% Load 50% Load to Min Load	4		2000 5.0		2000 5.0	μs ms	
Step Line Changes Output Transient		Input step 16 to/from 40 VDC	4	-1500	1500	-1500	1500	mVpk	
•	VOT _{LINE}	I _{OUT} = 100% Load	4	-1500	1500	-1500	1500	mVpk	
Recovery ^{7,10, 11}	TT _{LINE}	Input step 16 to/from 40 VDC I _{OUT} = 100% Load	4		5.0 5.0		5.0 5.0	ms ms	
TURN-ON Overshoot ¹	VTon _{os}	I _{OUT} = 100 and 2000mA(main)	4		750		750	mVpk	
Delay ^{1,12}	T on D	I _{OUT} = 0 and 100% Load (dual)	4		15		15	ms	
Load Fault Recovery ⁷	TR_{LF}		4		15		15	ms	

Notes to Specifications (Triple Output Models)

- Tested at each output
- Parameter guaranteed by line and load regulation tests. 2
- 3 At least 25% of the total power should be taken from the (+5V) main output.
- Bandwidth guaranteed by design. Tested for 20kHz to 2MHz 4
- An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum 5. power dissipation.
- Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop 6 stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- Above 125°C case temperature, derate output power linearly to 0 at 135°C case. 8 9 Load step transition time between 2µs and 10µs
- 10. Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of V_{OUT} at 50% load.
- Input step transition time between 2µs and 10µs
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

Notes to Specifications (Dual Output Models)

- Tested at each output.
- Parameter guaranteed by line and load regulation tests. 2
- Bandwidth guaranteed by design. Tested for 20kHz to 2MHz. 3
- Total power at both outputs. 4.
- When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation. 5.
- Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop 6. stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified. 7
- An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum 8 power dissipation.
- Load step transition time between 2µs and 10µs.
 Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of V_{OUT} at 50% load.
- 11. Input step transition time between 2µs and 10µs.
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.
- 13. Above 125°C case temperature, derate output power linearly to 0 at 135°C

Downloaded from Arrow.com.

Application Information

Inhibit Function

Connecting the inhibit pin (Pin 2 of single and dual models, pin 8 of triple models) to the input return (pin 10) will cause the converter to shutdown and operate in a low power standby mode. Power consumption in this mode is calculated by multiplying Vin times the input current inhibited, typically 225mW at Vin equal to 28V. The input current inhibited is relatively constant with changes in Vin. The open circuit inhibit pin voltage is typically 11.5V and can be conveniently driven by an open collector driver. An internal pull-up resistor enables the user to leave this pin floating if the inhibit function is not used in their particular application. All models use identical inhibit internal circuits. Forcing inhibit pin to any voltage between 0V and 6V will assure the converter is inhibited. The input current to this pin is 500µA maximum at Vpin2 = to 0V. The converter can be turned on by opening Pin 2 or forcing a voltage from 10V to 50V. Inhibit pin current from 10V to 50V is less than ± 50µA.

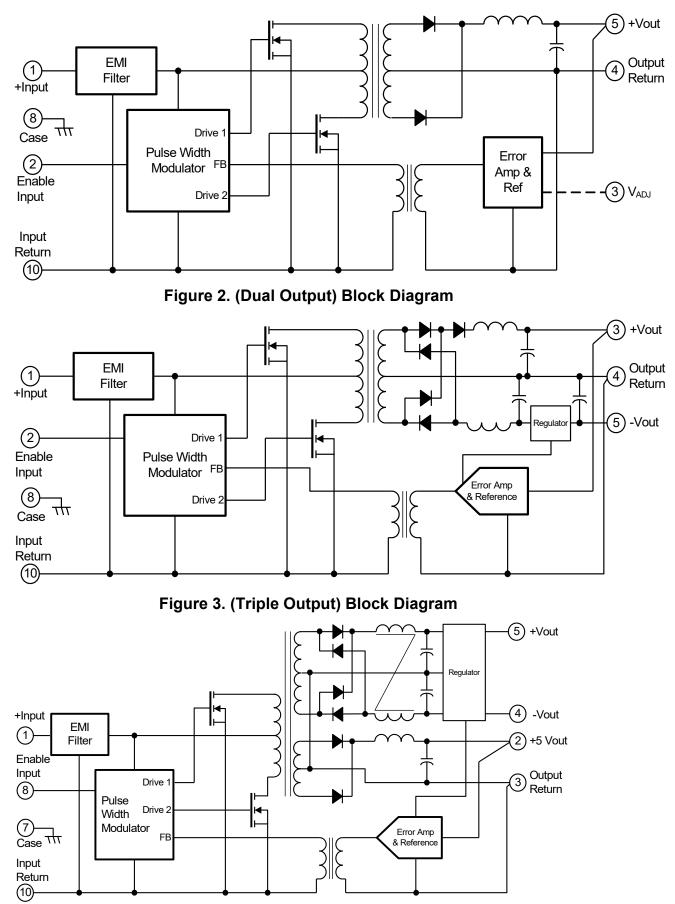
EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD- 461 CEO3.

The output voltage of the AHV28XXS can be adjusted upward by connecting a resistor between the Output Adjust (Pin 3) and the Output Common (Pin 4) as shown in Table 1.

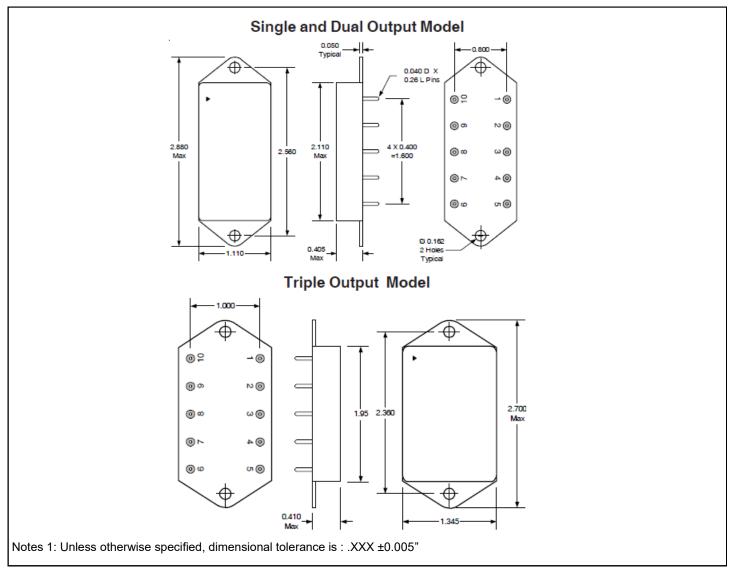
Table 1: Output Adjustment Resistor Values

* Resistance (Ohms)	Output Voltage Increase (%)					
Pin 3 to 4	5V	12V	15V			
None	0	0	0			
390 K	+1.0%	+1.6%	+1.7%			
145 K	+2.0%	+3.2%	+3.4%			
63 K	+3.1%	+4.9%	+5.1%			
22 K	+4.1%	+6.5%	+6.8%			
0	+5.0%	+7.9%	+8.3%			


* Output Adjust (Single Output Models Only)

Standard Microcircuit Drawing Number	Vendor Cage Code	IR Standard Part Number				
5962-91773	52467	AHV2805S				
5962-92112	52467	AHV2812S				
5962-92113	52467	AHV2815S				
5962-92114	52467	AHV2812D				
5962-92115	52467	AHV2812T				
5962-92116	52467	AHV2815T				

Standard Microcircuit Drawing Equivalence Table



Mechanical Outline

Pin Designation

Pin #	Single Output	Single Output Dual Output	
1	+ Input	+ Input	+ Input
2	Enable Input	Enable Input	+5VDC Output
3	Output Adjust*	+ Output	Output Return
4	Output Return	Output Return	- Dual Output (12/15VDC)
5	+ Output	- Output	+ Dual Output (12/15VDC)
6	NC	NC	NC
7	NC	NC	Case Ground
8	Case Ground	Case Ground	Enable Input
9	NC	NC	NC
10	Input Return	Input Return	Input Return

* Output Adjust (Single Output Models Only)

Device Screening

Requirement	MIL-STD-883 Method	Np Suffix	ES@	HB	СН
Temperature Range		-20°C to +85°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C
Element Evaluation	MIL-PRF-38534	N/A	N/A	N/A	Class H
Nondestructive Bond Pull	2023	N/A	N/A	N/A	Yes
Internal Visual	2017	0	Yes	Yes	Yes
Temperature Cycling	1010	N/A	Cond B	Cond C	Cond C
Constant Acceleration	2001, Y1 Axis	N/A	500 Gs	3000 Gs	3000 Gs
PIND	2020	N/A	N/A	N/A	Cond A
Burn-In	1015	N/A	48 hrs @ hi temp	160 hrs @125°C	160 hrs @ 125°C
Final Electrical (Group A)	MIL-PRF-38534 and Specification	25°C	-25°C ②	-55°C, +25°C, +125°C	-55°C, +25°C, +125°C
PDA	MIL-PRF-38534	N/A	N/A	N/A	10%
Seal, Fine and Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
Radiographic	2012	N/A	N/A	N/A	N/A
External Visual	2009	0	Yes	Yes	Yes

Notes:

① Best commercial practice

② Sample tests at low and high temperatures

③ -55°C to +105°C for AHE, ATO, ATW

Part Numbering AHV 28 15 T F /CH Screening Level Model (Please refer to Screening Table) No Suffix, ES, HB, CH Input Voltage Nominal Package Style 28 = 28V F = Flange Output Voltage Output Single - 05 = 5V, 12 = 12V, 15 = 15V S = Single Dual $-05 = \pm 5V, 12 = \pm 12V, 15 = \pm 15V$ D = Dual Triple $- 12 = 5V, \pm 12V$ T = Triple $15 = 5V, \pm 15V$

An Infineon Technologies Company

www.infineon.com/irhirel

Infineon Technologies Service Center: USA Tel: +1 (866) 951-9519 and International Tel: +49 89 234 65555 Leominster, Massachusetts 01453, USA Tel: +1 (978) 534-5776 San Jose, California 95134, USA Tel: +1 (408) 434-5000 Data and specifications subject to change without notice.

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (<u>www.infineon.com/hirel</u>).

<u>WARNING</u>

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.