STI23NM60ND

N-channel 600 V, 0.150 Ω typ., 19.5 A, FDmeshTM II Power MOSFET (with fast diode) in a I²PAK package

Datasheet — production data

Features

Order code	V _{DSS} @ T _{Jmax}	R _{DS(on)} max	I _D
STI23NM60ND	650 V	< 0.180 Ω	19.5 A

- The worldwide best R_{DS(on)} * area amongst the fast recovery diode devices
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- High dv/dt and avalanche capabilities

■ Switching applications

Description

These FDmesh™ II Power MOSFETs with intrinsic fast-recovery body diode are produced using the second generation of MDmesh™ technology. Utilizing a new strip-layout vertical structure, these revolutionary devices feature extremely low on-resistance and superior switching performance. They are ideal for bridge topologies and ZVS phase-shift converters.

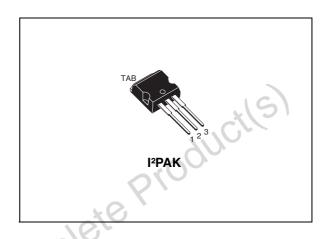


Figure 1. Internal schematic diagram

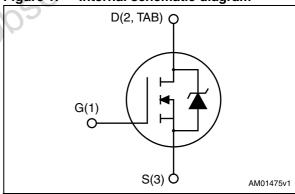


Table 1. Device summary

Oreder codes	Marking	Package	Packaging
STI23NM60ND	23NM60ND	TO-220FP	Tube

January 2013 Doc ID 024117 Rev 1 1/12

Contents STI23NM60ND

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuits 8
4	Package mechanical data9
5	Revision history
0050	Electrical characteristics

STI23NM60ND Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	19.5	А
I _D	Drain current (continuous) at T _C = 100 °C	11.7	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	78	А
P _{TOT}	Total dissipation at $T_C = 25$ °C	150	W
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	9 010	Α
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AS} , V_{DD} = 50 V)	700	mJ
dv/dt (2)	Peak diode recovery voltage slope	40	V/ns
T _{stg}	Storage temperature	-55 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.83	°C/W
R _{thj-amb}	Thermal resistance junction-amb max	62.5	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾		°C/W

^{1.} When mounted on 1 inch2 FR-4, 2 Oz copper board.

^{2.} $I_{SD} \leq 19.5 \text{ A, di/dt } \leq 600 \text{ A/µs, } V_{DD} = 80\% V_{(BR)DSS,} V_{DS(peak)} < V_{(BR)DSS}$

Electrical characteristics STI23NM60ND

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
dv/dt ⁽¹⁾	Drain-source voltage slope	$V_{DD} = 480 \text{ V}, I_{D} = 19.5 \text{ A},$ $V_{GS} = 10 \text{ V}$		30		V/ns
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	$V_{DS} = 600 \text{ V},$ $V_{DS} = 600 \text{ V}, T_c = 125 ^{\circ}\text{C}$. (1 100	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V	Ç.	90	±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 10 A		0.150	0.180	Ω

^{1.} Characteristic value at turn off on inductive load

Table 5. Dynamic

	Symbol Parameter			Min.	Тур.	Max.	Unit
	C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	2100 80 10	,	pF pF pF
	C _{oss eq.} (1)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	-	310	-	pF
Obsole	Rg	Gate input resistance	f=1 MHz Gate DC Bias=0 Test signal level=20 mV open drain	-	4	-	Ω
	$egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 480 V, I_{D} = 19.5 A V_{GS} = 10 V (see Figure 14)	-	69 13 35	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

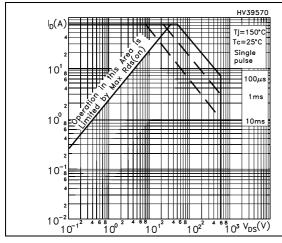
Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$t_{ m d(on)} \ t_{ m r} \ t_{ m d(off)} \ t_{ m f}$	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 13)	-	21 19 92 42	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-	١Ċ	19.5 78	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 19.5 A, V _{GS} =0	-C)	1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 19.5 A, di/dt =100 A/ μ s, V _{DD} = 60 V (see Figure 15)	0	190 1.2 13		ns μC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$V_{DD} = 60 \text{ V}$ di/dt =100 A/ μ s, $I_{SD} = 19.5$ A $T_j = 150 ^{\circ}\text{C}$ (see Figure 15)	-	270 2.0 15		ns μC Α

^{1.} Pulse width limited by safe operating area


^{2.} Pulsed: pulse duration = 300µs, duty cycle 1.5%

Electrical characteristics STI23NM60ND

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

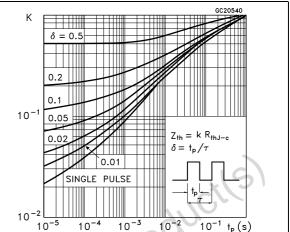
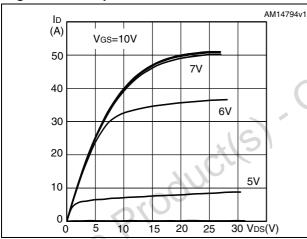



Figure 4. Output characteristics

Figure 5. Transfer characteristics

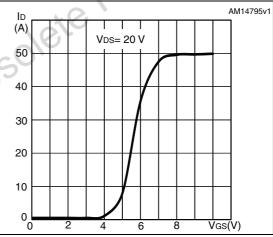
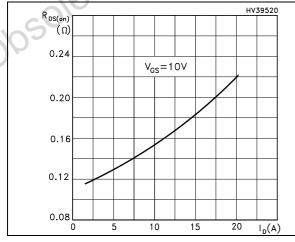
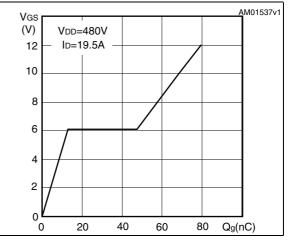
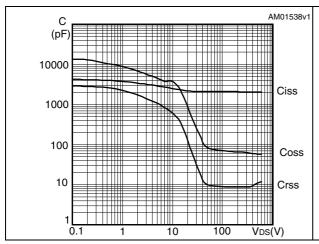




Figure 6. Static drain-source on resistance

Figure 7. Gate charge vs gate-source voltage



57

STI23NM60ND Electrical characteristics

Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs temperature

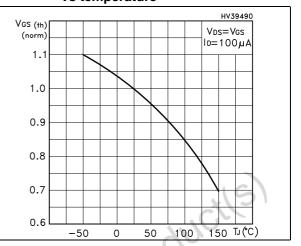
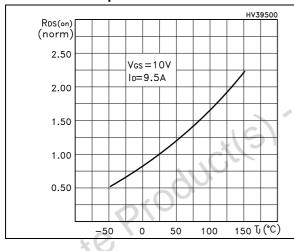



Figure 10. Normalized on-resistance vs temperature

Figure 11. Source-drain diode forward characteristics

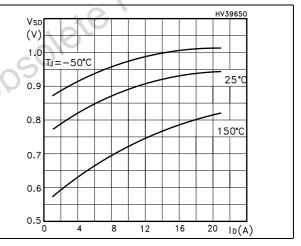
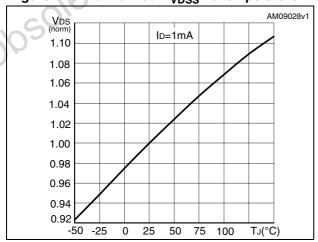



Figure 12. Normalized B_{VDSS} vs temperature

577

Test circuits STI23NM60ND

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

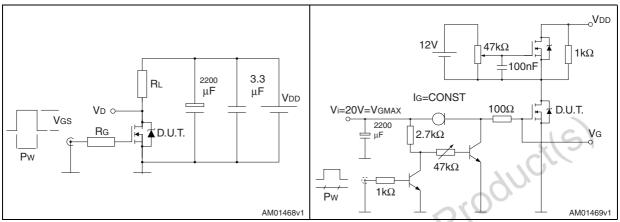


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

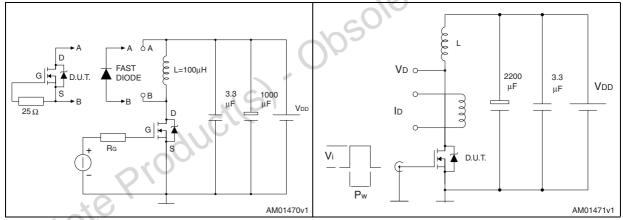
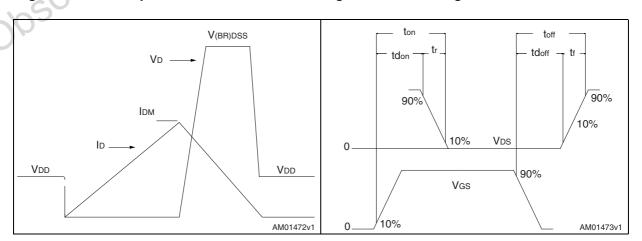
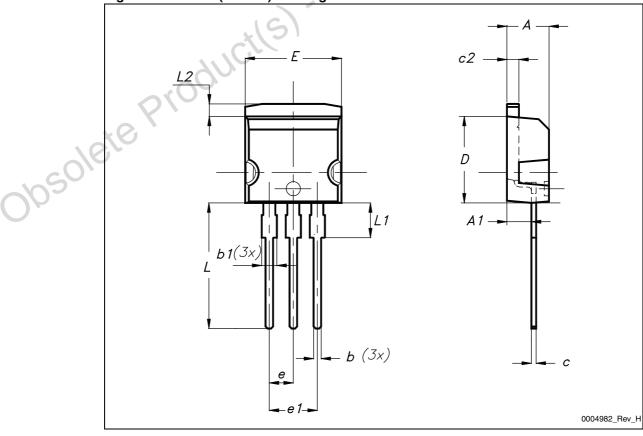



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.



577

Table 8. I²PAK (TO-262) mechanical data

DIM.		mm.	
Dilvi.	min.	typ	max.
Α	4.40		4.60
A1	2.40		2.72
b	0.61		0.88
b1	1.14		1.70
С	0.49		0.70
c2	1.23		1.32
D	8.95		9.35
е	2.40		2.70
e1	4.95		5.15
E	10		10.40
L	13	.x0	14
L1	3.50	76,	3.93
L2	1.27	,50,	1.40

Figure 19. I²PAK (TO-262) drawing

STI23NM60ND Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
07-Jan-2013	1	Initial release. The part number STI23NM60ND previously included in datasheet CD00183341.

Obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

