ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Bipolar Power Transistors 40 V, 3.0 A, Low V_{CE(sat)} PNP Transistor

ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

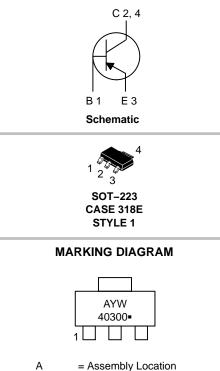
- Complement to NSS40301MZ4 Series
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

(b					
Rating	Symbol	Value	Unit		
Collector-Emitter Voltage	V _{CEO}	40	Vdc		
Collector-Base Voltage	V _{CB}	40	Vdc		
Emitter-Base Voltage	V _{EB}	6.0	Vdc		
Base Current – Continuous	Ι _Β	1.0	Adc		
Collector Current – Continuous	Ι _C	3.0	Adc		
Collector Current – Peak	I _{CM}	5.0	Adc		
Total Power Dissipation Total P _D @ T _A = 25°C (Note 1) Total P _D @ T _A = 25°C (Note 2)	P _D	2.0 0.80	W		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C		

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

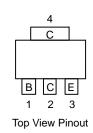
1. Mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material.


2. Mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material.

ON Semiconductor®

http://onsemi.com

PNP TRANSISTOR 3.0 AMPERES 40 VOLTS, 2.0 WATTS



Y

W

- = Work Week
- 40300 = Specific Device Code
 - = Pb–Free Package

PIN ASSIGNMENT

ORDERING INFORMATION

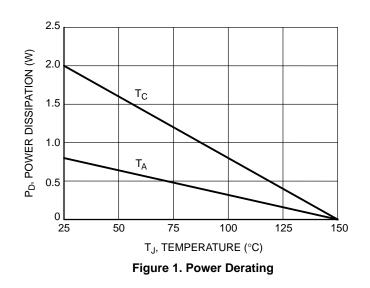
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

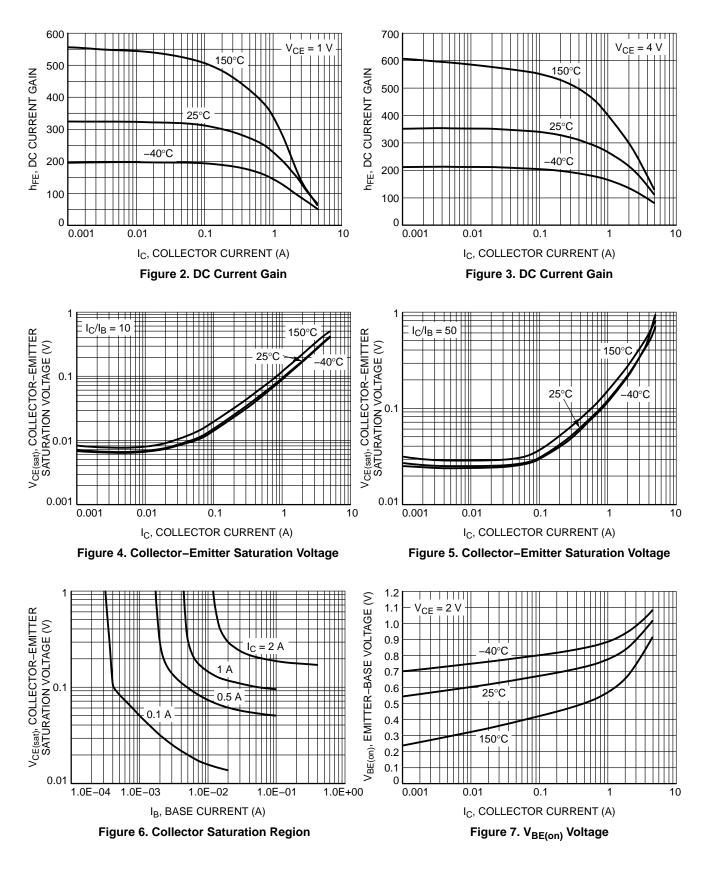
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Junction-to-Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material	R _{θJA} R _{θJA}	64 155	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

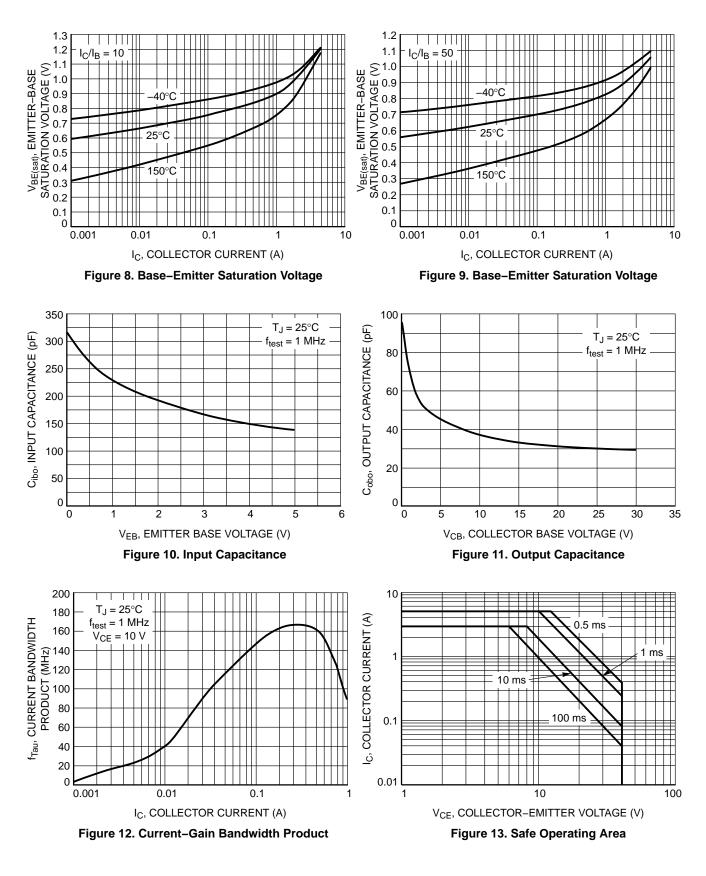
Characteristic		Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage ($I_C = 10 \text{ mAdc}, I_B = 0 \text{ Adc}$)	V _{CEO(sus)}	40	-	-	Vdc
Emitter-Base Voltage ($I_E = 50 \ \mu Adc$, $I_C = 0 \ Adc$)	V _{EBO}	6.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = 40 Vdc)	I _{CBO}	-	-	100	nAdc
Emitter Cutoff Current (V _{BE} = 6.0 Vdc)	I _{EBO}	_	_	100	nAdc


ON CHARACTERISTICS (Note 3)

	V _{CE(sat)}	- - -	- - -	0.070 0.150 0.400	Vdc
Base–Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Adc}$)	V _{BE(sat)}	-	-	1.0	Vdc
Base–Emitter On Voltage ($I_C = 1.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)	V _{BE(on)}	-	-	0.9	Vdc
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 0.5 \; \text{Adc}, V_{CE} = 1.0 \; \text{Vdc}) \\ (I_{C} = 1.0 \; \text{Adc}, V_{CE} = 1.0 \; \text{Vdc}) \\ (I_{C} = 3.0 \; \text{Adc}, V_{CE} = 1.0 \; \text{Vdc}) \end{array} $	h _{FE}	200 175 100		_ 350 _	-


DYNAMIC CHARACTERISTICS

Output Capacitance (V _{CB} = 10 Vdc, f = 1.0 MHz)	C _{ob}	-	40	-	pF
Input Capacitance (V _{EB} = 5.0 Vdc, f = 1.0 MHz)	C _{ib}	-	130	-	pF
Current–Gain – Bandwidth Product (Note 4) $(I_C = 500 \text{ mA}, V_{CE} = 10 \text{ V}, F_{test} = 1.0 \text{ MHz})$	f _T	_	160	-	MHz


3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 4. f_T = |h_{FE}| • f_{test}

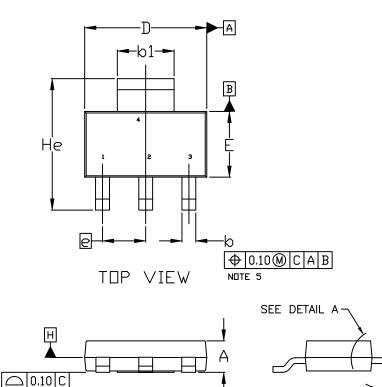
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS40300MZ4T1G	SOT-223 (Pb-Free)	1,000 / Tape & Reel
NSV40300MZ4T1G*	SOT-223 (Pb-Free)	1,000 / Tape & Reel
NSS40300MZ4T3G	SOT-223 (Pb-Free)	4,000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP


Capable

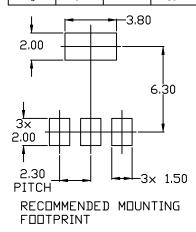
DATE 02 OCT 2018

SCALE 1:1

С

-11

SIDE VIEW


DETAIL A

A1

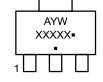
SOT-223 (TO-261) CASE 318E-04 ISSUE R

- NDTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS				
DIM	MIN.	NDM.	MAX.		
A	1.50	1.63	1.75		
A1	0.02	0.06	0.10		
b	0.60	0.75	0.89		
b1	2.90	3.06	3.20		
с	0.24	0.29	0.35		
D	6.30	6.50	6.70		
E	3.30	3.50	3.70		
e		2.30 BSC			
L	0.20				
L1	1.50	1.75	2.00		
He	6.70	7.00	7.30		
θ	0*		10*		

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DESCRIPTION: SOT-223 (TO-261) PAGE 1 OF		PAGE 1 OF 2		
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

FRONT VIEW


© Semiconductor Components Industries, LLC, 2018

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	Style 12: Pin 1. Input 2. Output 3. NC 4. Output	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

- A = Assembly Location
- Y = Year
- W = Work Week
- XXXXX = Specific Device Code
- = Pb-Free Package
- (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.							
DESCRIPTION:	SOT-223 (TO-261) PAGE 2 OF		PAGE 2 OF 2					
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an uticular purpose, nor does ON Semiconducto	y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or	ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥