
ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

@2014 Semiconductor Components Industries, LLC. August-2017, Rev. 3

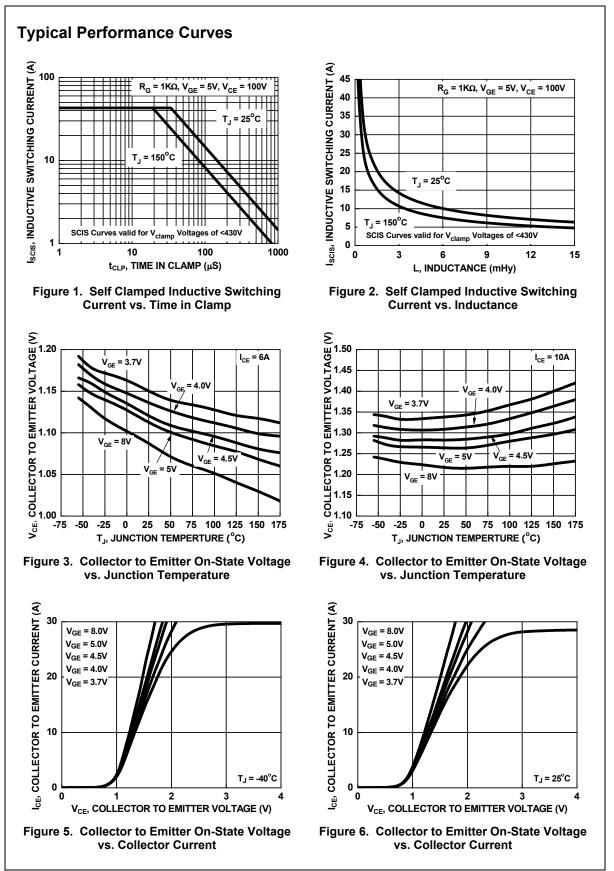
Devic	e Marking	Device	Package	Reel Size	Tape Width	า	Quan	tity
FGE	33040G2	FGB3040G2-F085	TO-263AB	330mm	24mm		800)
FGI	D3040G2	FGD3040G2-F085	TO-252AA	330mm	16mm		250	0
FGF	P3040G2	FGP3040G2-F085	TO-220AB	Tube	N/A		50	
FGI	3040G2	FGI3040G2-F085	TO-262AA	Tube	N/A		50	
Electr	ical Char	racteristics T _A = 25°	C unless otherwise no	ted				
Symbol		Parameter	Test Co	nditions	Min	Тур	Max	Units
3V _{CER}	Collector to E	mitter Breakdown Voltage	T _J = -40 to 150 ^o C		370	400	430	V
BV _{CES}	Collector to E	mitter Breakdown Voltage	$T_{\rm J} = -40$ to $150^{\rm o}$ C		390	420	450	V
BV _{ECS}	Emitter to Co	llector Breakdown Voltage	I _{CE} = -20mA, V _{GE} = 0 T _J = 25°C	V,	28	-	-	V
BV _{GES}	Gate to Emitt	er Breakdown Voltage	I _{GES} = ±2mA		±12	±14	-	V
	Collector to E	mitter Leakage Current	V _{CE} = 250V, R _{GE} = 11			-	25	μA
CER				T _J = 150 ^o		-	1	mA
I _{ECS}	Emitter to Co	llector Leakage Current	V _{EC} = 24V,	$T_{\rm J} = 25^{\circ}C$		-	1	mA
	Carias Cata I			$T_{J} = 150^{\circ}$		-	40	0
R ₁	Series Gate I	er Resistance			- 10K	- 120	- 30K	Ω Ω
R ₂					TUR	-	301	52
On Sta	te Charact	eristics						
V _{CE(SAT)}	Collector to E	Emitter Saturation Voltage	$I_{CE} = 6A, V_{GE} = 4V,$	T _J = 25 ^o		1.15	1.25	V
V _{CE(SAT)}	Collector to E	Emitter Saturation Voltage	I _{CE} = 10A, V _{GE} = 4.5\			1.35	1.50	V
V _{CE(SAT)}	Collector to E	mitter Saturation Voltage	$I_{CE} = 15A, V_{GE} = 4.5V,$	T _J = 150	°C -	1.68	1.85	V
E _{SCIS}		I Inductive Switching	L = 3.0 mHy,RG = 1Kg	$T_{J} = 25^{\circ}$		_	300	mJ

Thermal Characteristics

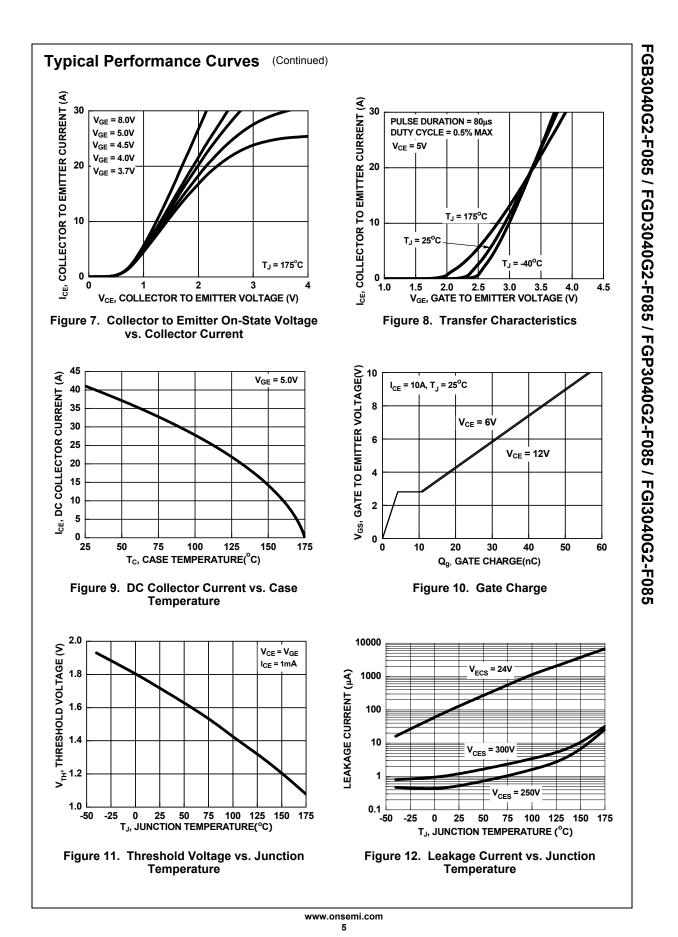
$R_{\theta JC}$	Thermal Resistance Junction to Case	
010		

Notes:

1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS}=14.2A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.

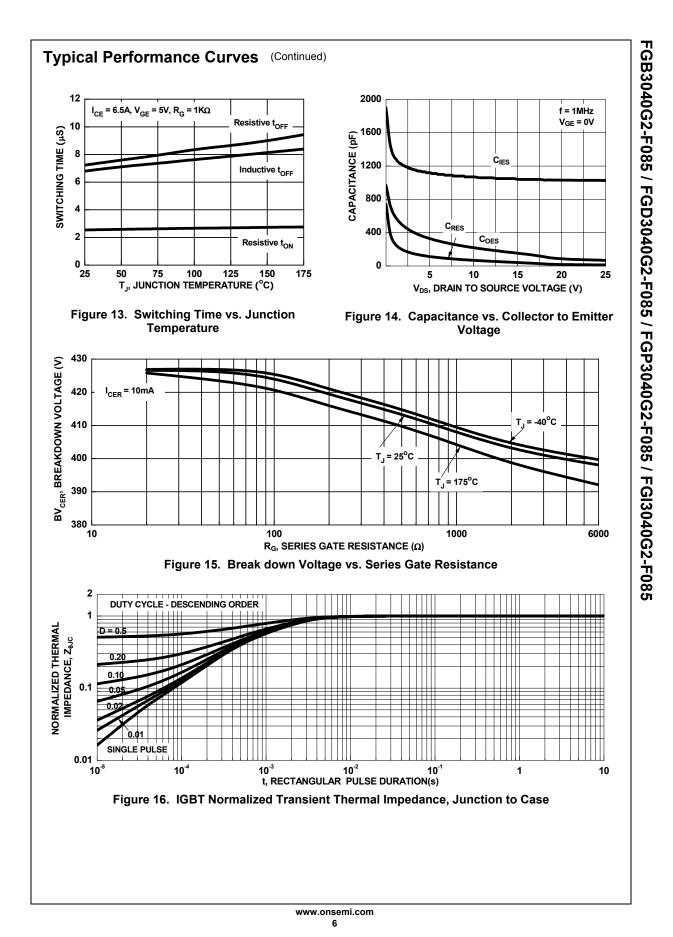

1

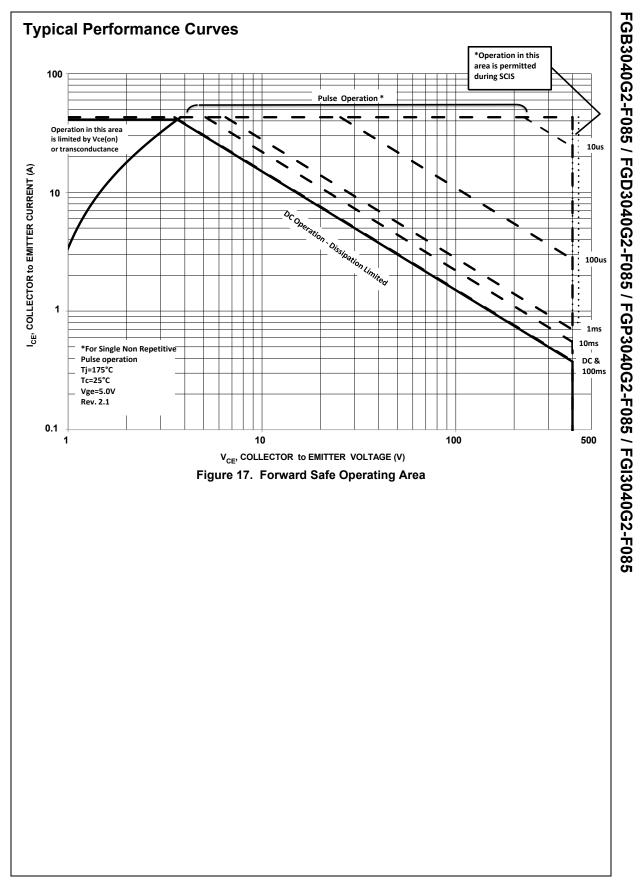
_

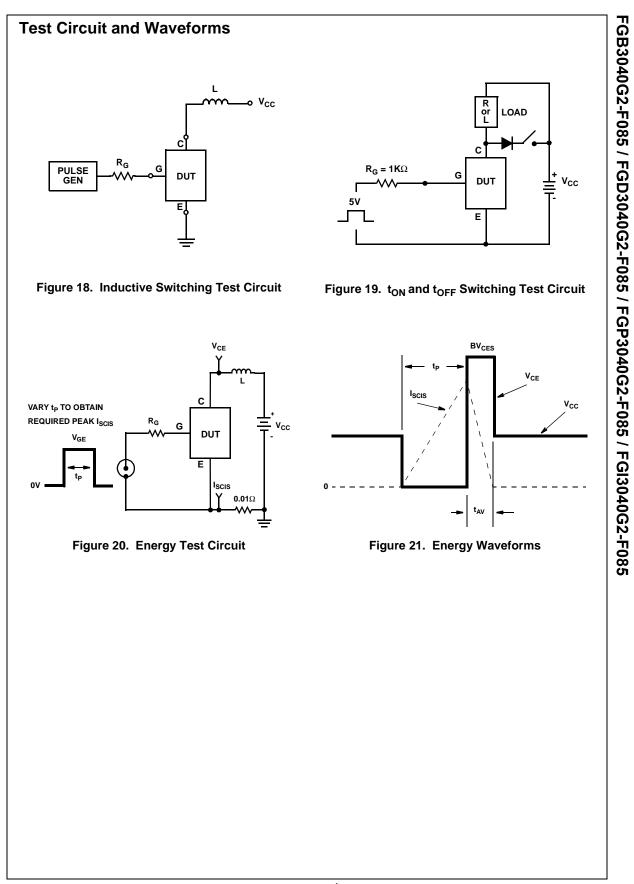

°C/W

2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 170 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS}=10.8A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.

Pynamic Characteristics $\begin{array}{c c c c c c c c c c c c c c c c c c c $
$L_{G(ON)}$ Gate Charge $V_{GE} = 5V$ $ 21$ $ 11C$ $V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_{CE} = 1mA, V_{CE} = V_{GE}, \frac{T_J = 25^{\circ}C}{T_J = 150^{\circ}C}$ 1.3 1.7 2.2 V V_{GEP} Gate to Emitter Plateau Voltage $V_{CE} = 12V, I_{CE} = 10A$ $ 2.8$ $ V$ Switching Characteristics $d_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ $ 0.9$ 4 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ $ 1.9$ 7 μs $d_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH, V_{GE} = 5V, R_G = 1K\Omega$ $ 4.8$ 15 μs V_{GE} = 5V, R_G = 1K\Omega
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Switching Characteristics $d_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs r_R Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $d_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $Q_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ 0.01.50.01.5
$d_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs r_R Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $d_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $Q_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -0.04.5 μs
$d_{(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs r_R Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $d_{(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $Q_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -0.04.5 μs
$\begin{array}{c c} & \text{Current Rise Time-Resistive} & V_{GE} = 5V, R_{G} = 1K\Omega \\ \hline T_{J} = 25^{\circ}C, & - & 1.9 & 7 & \mu s \\ \hline d_{(OFF)L} & \text{Current Turn-Off Delay Time-Inductive} & V_{CE} = 300V, L = 1mH, & - & 4.8 & 15 & \mu s \\ \hline V_{GE} = 5V, R_{G} = 1K\Omega & & 0.0 & 15 & \mu s \\ \hline \end{array}$
$\frac{1}{d(OFF)L} Current Turn-Off Delay Time-Inductive}{V_{CE} = 300V, L = 1mH,} \qquad - 4.8 15 \mu s$
L Current Fall Time-Inductive $V_{GE} = 5V, R_G = 1K\Omega$ $I_{CE} = 6.5A, T_J = 25^{\circ}C,$ - 2.0 15 µs




www.onsemi.com 4



Downloaded from Arrow.com.

om Arrow.com.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for uses an articial component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harding, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or d

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com