

N-channel 650 V, 0.60 Ω typ., 7 A MDmesh M2 Power MOSFET in a TO-220FP package

TO-220FP

NG1D2S3Z

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STF11N65M2	650 V	0.68 Ω	7 A	25 W

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- · Zener-protected

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Product status link

STF11N65M2

Product summary			
Order code	STF11N65M2		
Marking	11N65M2		
Package	TO-220FP		
Packing	Tube		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	7	A
ID(·)	Drain current (continuous) at T _C = 100 °C	4.4	_ A
I _{DM} ⁽²⁾	Drain current (pulsed)	28	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	25	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/IIS
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 $^{\circ}C$)	2.5	kV
T _{stg}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 to 150	

- 1. Limited by maximum junction temperature.
- 2. Pulse width limited by T_J max.
- 3. $I_{SD} \le 7$ A, di/dt = 400 A/ μ s, V_{DS} (peak) $< V_{(BR)DSS}$, $V_{DD} = 400$ V.
- 4. $V_{DS} \le 520 \text{ V}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	C/VV

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _J max)	1.5	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	110	mJ

DS10136 - Rev 3 page 2/12

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	650			V	
l	Zoro goto voltago drain ourrent	V _{GS} = 0 V, V _{DS} = 650 V			1		
I _{DSS}	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 650 V, T_{C} = 125 °C ⁽¹⁾			100	μA	
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μA	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	2	3	4	V	
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3.5 A		0.60	0.68	Ω	

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	410	-	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	20	-	pF
C _{rss}	Reverse transfer capacitance		-	0.9	-	
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 520 V, V _{GS} = 0 V	-	43	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	6.4	-	Ω
Qg	Total gate charge	V_{DD} = 520 V, I_{D} = 7 A, V_{GS} = 0 to 10 V	-	12.5	-	
Q _{gs}	Gate-source charge	(see Figure 14. Test circuit for gate charge behavior)	-	3.2	-	nC
Q_{gd}	Gate-drain charge		-	5.8	-	

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

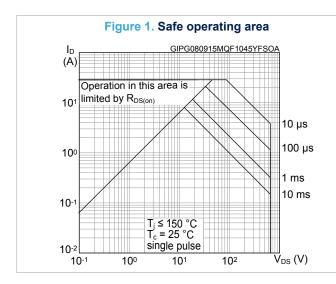
Table 6. Switching times

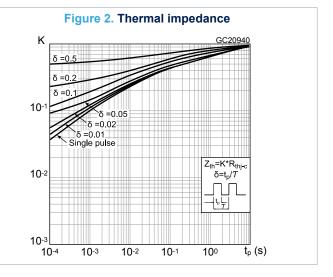
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 325 V, I _D = 3.5 A,	-	9.5	-	
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	7.5	-	
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	26	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	15	-	

DS10136 - Rev 3 page 3/12

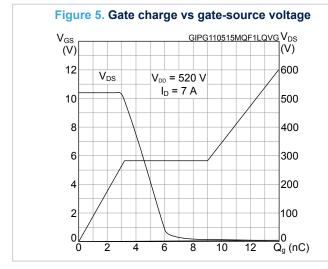
Table 7. Source-drain diode

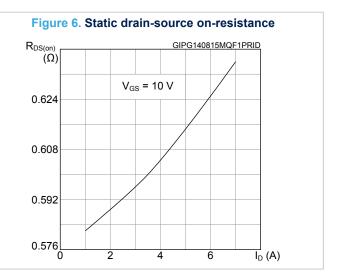
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		28	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 7 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/µs, V _{DD} = 60 V	-	318		ns
Q _{rr}	Reverse recovery charge	(see Figure 15. Test circuit for inductive	-	2.5		μC
I _{RRM}	Reverse recovery current	load switching and diode recovery times)	-	15.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs,	-	437		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	3.2		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	15		Α

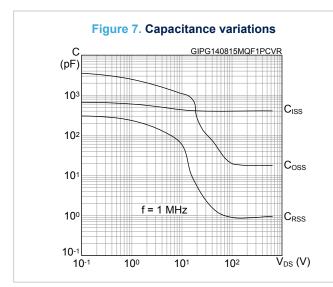

^{1.} Pulse width is limited by safe operating area.

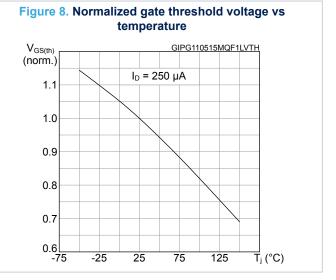

DS10136 - Rev 3 page 4/12


^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.




2.1 Electrical characteristics (curves)





DS10136 - Rev 3 page 5/12

R_{DS(on)} GIPG110515MQF1LRON (norm.)

2.2

1.8

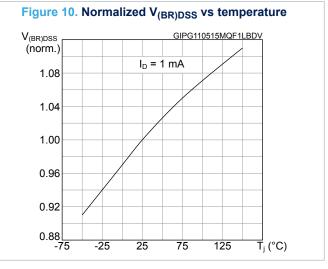
1.4

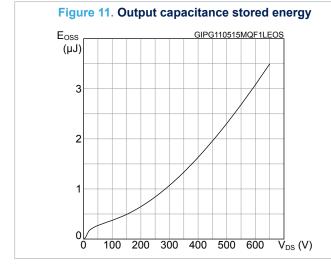
1.0

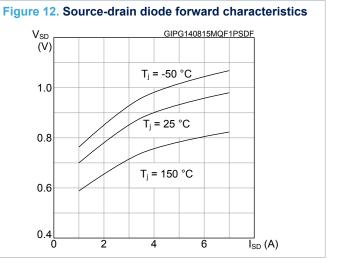
0.6

25

75


125


T_i (°C)


-25

0.2 -75

Figure 9. Normalized on-resistance vs temperature

DS10136 - Rev 3 page 6/12

3 **Test circuits**

Figure 13. Test circuit for resistive load switching times

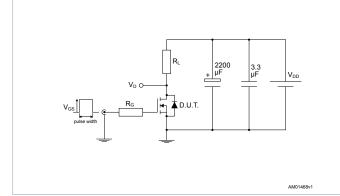


Figure 14. Test circuit for gate charge behavior

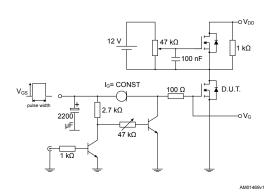


Figure 15. Test circuit for inductive load switching and diode recovery times

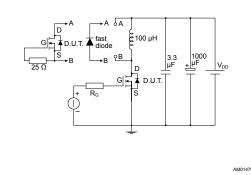


Figure 16. Unclamped inductive load test circuit

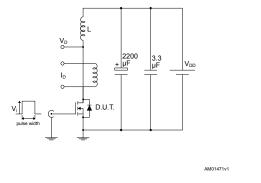


Figure 17. Unclamped inductive waveform

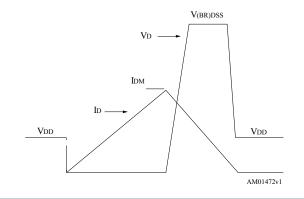
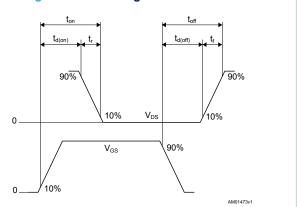
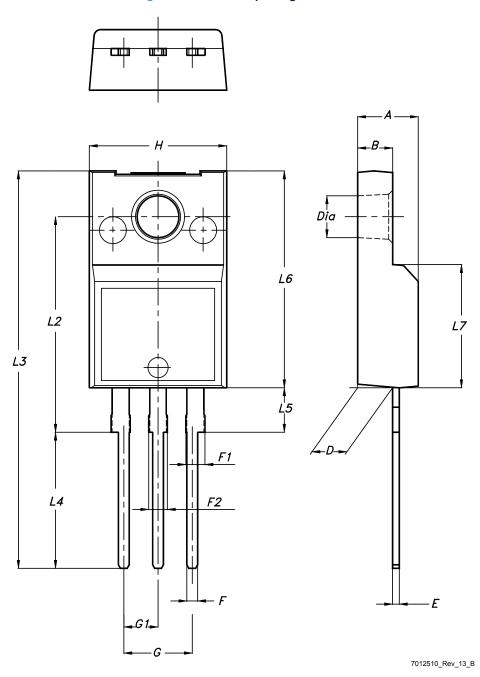



Figure 18. Switching time waveform

DS10136 - Rev 3 page 7/12



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-220FP package information

Figure 19. TO-220FP package outline

DS10136 - Rev 3 page 8/12

Table 8. TO-220FP package mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
В	2.50		2.70
D	2.50		2.75
E	0.45		0.70
F	0.75		1.00
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.20
G1	2.40		2.70
Н	10.00		10.40
L2		16.00	
L3	28.60		30.60
L4	9.80		10.60
L5	2.90		3.60
L6	15.90		16.40
L7	9.00		9.30
Dia	3.00		3.20

Revision history

Table 9. Document revision history

Date	Revision	Changes
09-May-2014	1	First release.
		Text and formatting changes throughout document.
		On cover page:
		- updated Title and Features
08-Sep-2015	2	In section Electrical characteristics:
		- updated and renamed table Static (was On /off states)
		Updated section Electrical characteristics (curves)
		Updated and renamed section Package information (was Package mechanical data)
		The part number STFI11N65M2 have been moved to a separate datasheet and the document has been updated accordingly.
26-Jun-2019	3	Updated Section 1 Electrical ratings and Section 2 Electrical characteristics.
		Minor text changes.

Contents

1	Elec	ctrical ratings	2
2	Elec	ctrical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	t circuits	7
4	Pac	kage information	8
	4.1	TO-220FP package information	8
Rev	/ision	history	10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS10136 - Rev 3 page 12/12