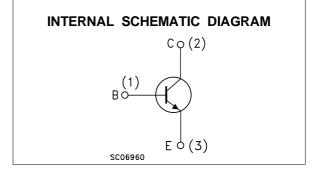

2N1893


SMALL SIGNAL NPN TRANSISTOR

 GENERAL PURPOSE HIGH VOLTAGE DEVICE

DESCRIPTION

The 2N1893 is a Silicon Planar Epitaxial NPN transistor in Jedec TO-39 metal case, designed for use in high-performance amplifier, oscillator and switching circuits. It provides greater voltage swings in oscillator and amplifier circuits and more protection in inductive switching circuits due to its 120 V collector-to-base voltage rating.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	120	V
VCER	Collector-Emitter Voltage ($R_{BE} \le 10\Omega$)	100	V
V_{CEO}	Collector-Emitter Voltage $(I_B = 0)$	80	V
V _{EBO}	Emitter-Base Voltage $(I_C = 0)$	7	V
Ιc	Collector Current	0.5	A
P _{tot}	Total Dissipation at $T_{amb} \le 25$ °C at $T_C \le 25$ °C at $T_C \le 100$ °C	0.8 3 1.7	W W W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-Case	Max	50	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	187.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max. 10 15	Unit nA μA
Ісво	Collector Cut-off Current (I _E = 0)	$V_{CB} = 90 V$ $V_{CB} = 90 V$ $T_{C} = 150 \ ^{o}C$				
I _{EBO}	Emitter Cut-off Current $(I_c = 0)$	V _{EB} = 5 V			10	nA
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 100 μA	120			V
$V_{(BR)CER*}$	Collector-Emitter Breakdown Voltage ($R_{BE} \le 10 \Omega$)	I _C = 10 mA	100			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	80			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 100 μA	7			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage				1.2 5	V V
$V_{\text{BE}(\text{sat})}*$	Base-Emitter Saturation Voltage			0.82 0.96	0.9 1.3	V V
h _{FE} *	DC Current Gain		20 35 40 20	50 80 80 40	120	
h _{fe} *	Small Signal Current Gain	$ \begin{array}{ll} I_C = 1 \mbox{ mA} & V_{CE} = 5 \mbox{ V} & f = 1 \mbox{ Hz} \\ I_C = 5 \mbox{ mA} & V_{CE} = 10 \mbox{ V} & f = 1 \mbox{ Hz} \end{array} $	30 45	70 85	150	
f _T	Transition Frequency	$I_{C} = 50 \text{ mA}$ $V_{CE} = 10 \text{ V} \text{ f} = 20 \text{MHz}$	50	70		MHz
Ссво	Collector-Base Capacitance	$I_E = 0 \qquad V_{CB} = 10 \ V f = 1 MHz$		13	15	pF
CEBO	Emitter-Base Capacitance	$I_{C} = 0 \qquad V_{EB} = 0.5 \text{ V} \qquad f = 1 \text{MHz}$		55	85	pF

57

* Pulsed: Pulse duration = 300 μ s, duty cycle \leq 1 %

DC Current Gain

h_{FE}

160

140

120

100

80

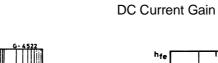
60

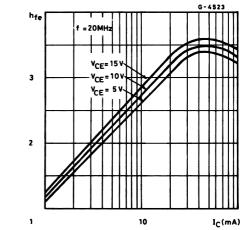
V_{CE} = 10 V

10¹

150°C

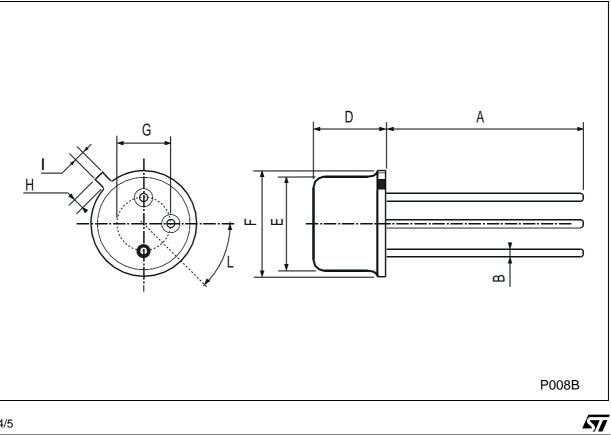
100°C


55°C


10

1

Π


100 I_C(mA)

TO-39 MECHANICAL DATA						
DIM.	mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	12.7			0.500		
В			0.49			0.019
D			6.6			0.260
E			8.5			0.334
F			9.4			0.370
G	5.08			0.200		
н			1.2			0.047
I			0.9			0.035
L	45 [°] (typ.)					

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

