

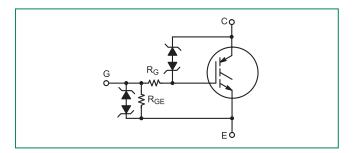
NGD8201AN - 20 A, 400 V, N-Channel Ignition IGBT, DPAK

20 Amps, 400 Volts $V_{CE}(on) \le 1.3 V @$ $I_{C} = 10 A, V_{GF} \ge 4.5 V$

Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	440	V
Gate-Gate Voltage	V _{CES}	440	V
Gate-Emitter Voltage	V _{GE}	± 15	V
Collector Current-Continuous @ T _C = 25°C - Pulsed	I _c	20 50	A _{DC}
Continous Gate Current	I _G	1.0	mA
Transient Gate Current (t \leq 2 ms, f \leq 100 Hz)	I _G	20	mA
ESD (Charged-Device Model)	ESD	2.0	kV
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	2.0	kV
ESD (Machine Model) $R = 0 \Omega$, $C = 200 pF$	ESD	500	V
Total Power Dissipation @T _c = 25°C Derate above 25°C	P _D	125 0.83	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over–Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- DPAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- New Design Increases Unclamped Inductive Switching (UIS) Energy Per Area
- Low Threshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- Emitter Ballasting for Short-Circuit Capability
- These are Pb-Free Devices

Functional Diagram

Additional Information

Samples

Unclamped Collector–To–Emitter Avalanche Characteristics			
	Symbol	Value	Unit
Single Pulse Collector-to-Emitter Avalanche Energy			
$\rm V_{CC} = 50$ V, $\rm V_{GE} = 5.0$ V, $\rm P_k$ $\rm I_L = 16.7$ A, $\rm R_G = 1000~\Omega$, L = 1.8 mH, Starting $\rm T_J = 25^{\circ}C$		250	
V_{CC} = 50 V, V_{GE} = 5.0 V, P_k I_L = 14.9 A, R_G = 1000 Ω , L = 3.0 mH, Starting T_J = 150°C	E _{AS}	200	mJ
V_{CC} = 50 V, V_{GE} = 5.0 V, P_k I_L = 14.1 A, R_G = 1000 Ω , L = 1.8 mH, Starting T_J = 175°C		180	
Reverse Avalanche Energy			
$V_{CC} = 100 \text{ V}$, $V_{GE} = 20 \text{ V}$, $P_k I_L = 25.8 \text{ A}$, $L = 6.0 \text{ mH}$, Starting $T_J = 25^{\circ}\text{C}$	E _{AS (R)}	2000	mJ

Thermal Characteristics

	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{e^{JC}}$	1.3	°C/W
Thermal Resistance, Junction to Ambient DPAK (Note 1)	R _{eJA}	95	- C/VV
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T _L	275	°C

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

Electrical Characteristics - OFF

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit				
Collector-Emitter		I _c = 2.0 mA	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	370	395	420					
Clamp Voltage	B _{VCES}	$I_c = 10 \text{ mA}$	$T_{_{\rm J}} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	390	415	440	V				
		$V_{CE} = 15 V$ $V_{GE} = 0 V$	T _J = 25°C	-	0.1	1.0					
Zero Gate Voltage			T _J = 25°C	0.5	1.5	10					
Collector Current	CES	$V_{CE} = 200 \text{ V}$ $V_{GE} = 0 \text{ V}$	T _J = 175°C	1.0	25	100*	μΑ				
			T _J = -40°C	0.4	0.8	5.0					
			T _J = 25°C	30	35	39					
Reverse Collector–Emitter Clamp Voltage		B _{VCES(R)}	B _{VCES(R)}	B _{VCES(R)}	I _c = -75 mA	$I_{c} = -75 \text{ mA}$	T _J = 175°C	35	39	45*	V
					T _J = -40°C	30	33	37			
			T _J = 25°C	0.05	0.2	1.0					
Reverse Collector–Emitter Leakage Current	I _{CES(R)}	V _{CE} = -24 V	T _J = 175°C	1.0	8.5	25	mA				
			T _J = -40°C	0.005	0.025	0.2					
Gate-Emitter Clamp Voltage	BV _{GES}	$I_{\rm G} = \pm 5.0 \rm mA$	$T_{_{\rm J}} = -40^{\circ}{\rm C} \text{ to } 175^{\circ}{\rm C}$	12	12.5	14	V				
Gate-Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 5.0 V$	$T_{_{\rm J}} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	200	300	350*	μΑ				
Gate Resistor	R _G	-	$T_{_{\rm J}} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	_	70	_	Ω				
Gate-Emitter Resistor	R _{GE}	-	$T_J = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	14.25	16	25	kΩ				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $^{{\}rm *Maximum\, Value\,\, of\,\, Characteristic\,\, across\, Temperature\,\, Range}.$

Electrical Characteristics - ON (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
			T _J = 25°C	1.5	1.8	2.1		
Gate Threshold Voltage	V _{GE (th)}	$I_{c} = 1.0 \text{ mA},$ $V_{GE} = V_{CE}$	T _J = 175°C	0.7	1.0	1.3	V	
		GE CE	T _J = -40°C	1.7	2.0	2.3*		
Threshold Temperature Coefficient (Negative)	_	-	_	4.0	4.6	5.2	mV/°C	
			T _J = 25°C	0.85	1.03	1.35		
		$I_{c} = 6.5 \text{ A},$ $V_{ge} = 3.7 \text{ V}$	T _J = 175°C	0.7	0.9	1.15		
		GE — S.7 V	T _J = -40°C	0.09	1.11	1.4		
			T _J = 25°C	0.9	1.11	1.45		
		$I_{c} = 9.0 \text{ A},$ $V_{ge} = 3.9 \text{ V}$	T _J = 175°C	0.8	1.01	1.25		
		V GE — 0.0 V	T _J = -40°C	1.0	1.18	1.5		
	V _{CE (on)}		T _J = 25°C	0.85	1.15	1.4		
		$I_{c} = 7.5 \text{ A},$ $V_{ge} = 4.5 \text{ V}$	T _J = 175°C	0.7	0.95	1.2		
Collector-to-Emitter		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V GE — 4.5 V	T _J = -40°C	1.0	1.3	1.6*	.,
On-Voltage			T _J = 25°C	1.0	1.3	1.6	V	
		$I_{C} = 10 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 175°C	0.8	1.05	1.4		
		V GE - 4.0 V	T _J = -40°C	1.1	1.4	1.7*		
			T _J = 25°C	1.15	1.45	1.7		
		$I_{C} = 15 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 175°C	1.0	1.3	1.55		
		v _{GE} = 4.5 v	1.25	1.55	1.8*			
			T _J = 25°C	1.1	1.4	1.9		
		$I_{c} = 20 \text{ A},$	T _J = 175°C	1.2	1.5	1.8		
		V _{GE} = 4.5 V	T _J = -40°C	1.3	1.42	2.0		
Forward Transconductance	gfs	$I_{c} = 6.0 \text{ A},$ $V_{ce} = 5.0 \text{ V}$	T _J = 25°C	10	18	25	Mhos	

 $^{{\}rm *Maximum\,Value\,\,of\,\,Characteristic\,\,across\,Temperature\,\,Range}.$

^{3.} Pulse Test: Pulse Width \leq 300 μ S, Duty Cycle \leq 2%.

Dynamic Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Input Capacitance	C _{ISS}	f = 10 kHz $V_{CC} = 25 \text{ V}$			1100	1300	1500	
Output Capacitance	C _{oss}			T _J = -40°C to 175°C	70	80	90	pF
Transfer Capacitance	C _{RSS}			18	20	22		

Switching Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn Off Deleviting (Decisting)		V _{cc} = 300 V	T _J = 25°C	6.0	8.0	10	
Turn-Off Delay Time (Resistive)	t _{d (off)}	I _c = 9.0 A	T _J = 175°C	6.0	8.0	10	
5 U.T. (D. ; ; ;)		$R_{G} = 1.0 \text{ k}\Omega$ $R_{L} = 33 \Omega$	T _J = 25°C	4.0	6.0	8.0	
Fall Time (Resistive)	t _f	$V_{GE} = 5.0 \text{ V}$	T _J = 175°C	8.0	10.5	14	
T 0" D T' " 1 1 1 1 1 1 1 1 1	t _{d (off)}	V _{CC} = 300 V	T _J = 25°C	3.0	5.0	7.0	
Turn-Off Delay Time (Inductive)		T _{d (off)}	I _c = 9.0 A	T _J = 175°C	5.0	7.0	9.0
5 NT: (1 1 2 2)	t _f	$R_G = 1.0 \text{ k}\Omega$ $L = 300 \mu\text{H}$ $V_{GE} = 5.0 V$	T _J = 25°C	1.5	3.0	4.5	μSec
Fall Time (Inductive)			T _J = 175°C	5.0	7.0	10	
T. 0.01.T		V _{cc} = 14 V	T _J = 25°C	1.0	1.5	2.0	
Turn-On Delay Time	t _{d (on)}	$I_{c} = 9.0 \text{ A}$ $R_{g} = 1.0 \text{ k}\Omega$ $R_{L} = 1.5 \Omega$ $V_{GE} = 5.0 \text{ V}$	T _J = 175°C	1.0	1.5	2.0	
D. T			T _J = 25°C	4.0	6.0	8.0	
Rise Time	t _r		T _J = 175°C	3.0	5.0	7.0	

Typical Electrical Characteristics

Figure 1. Self Clamped Inductive Switching

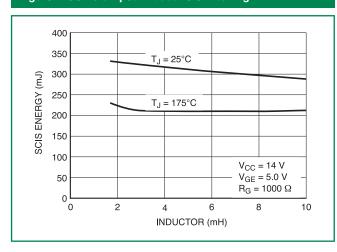


Figure 2. Open Secondary Avalanche Current vs. Temperature

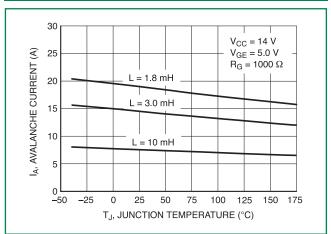


Figure 3. Collector-to-Emitter Voltage vs. Junction Temperature

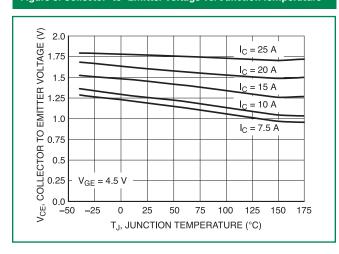


Figure 4. Collector Current vs. Collector-to-Emitter Voltage

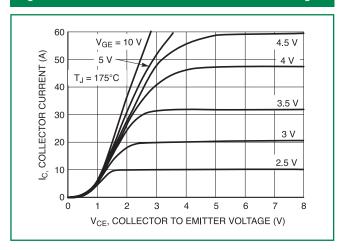


Figure 5. Collector Current vs. Collector-to-Emitter Voltage

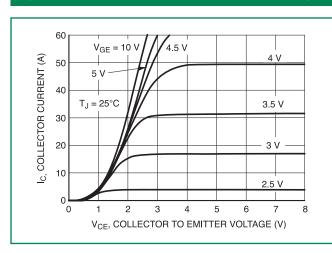
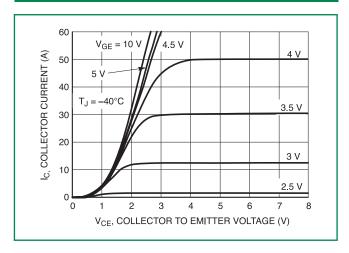



Figure 6. Collector Current vs. Collector-to-Emitter Voltage

© 2018 Littelfuse, Inc.

Specifications are subject to change without notice.

Revised: 02/15/18

Figure 7. Transfer Characteristics

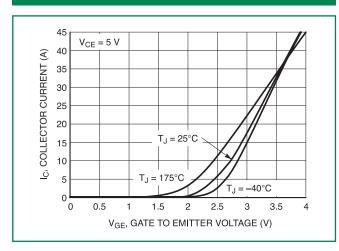


Figure 8. Collector-to-Emitter Leakage Current vs. Temp

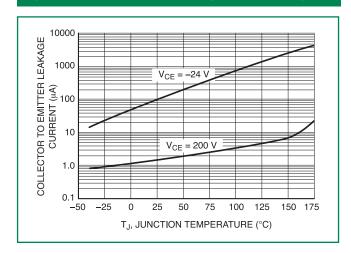


Figure 9. Gate Threshold Voltage vs. Temperature

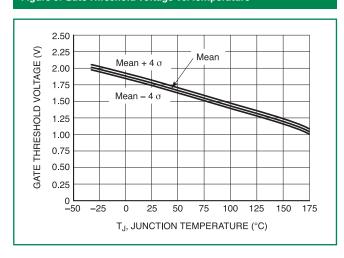


Figure 10. Capacitance vs. Collector-to-Emitter Voltage

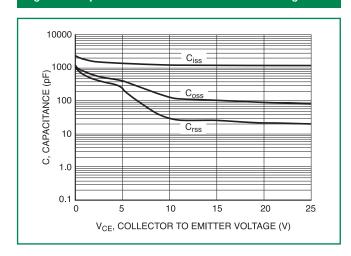


Figure 11. Resistive Switching Fall Time vs. Temperature

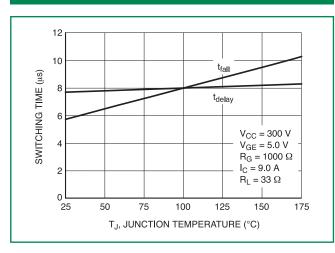
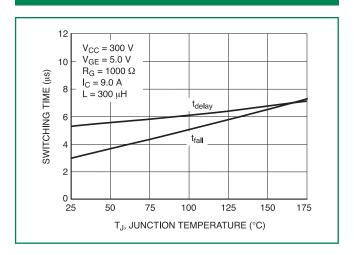



Figure 12. Inductive Switching Fall Time vs. Temperature

© 2018 Littelfuse, Inc.

Specifications are subject to change without notice.

Revised: 02/15/18

Figure 13. Minimum Pad Transient Thermal Resistance (Non-normalized Junction-to-Ambient)

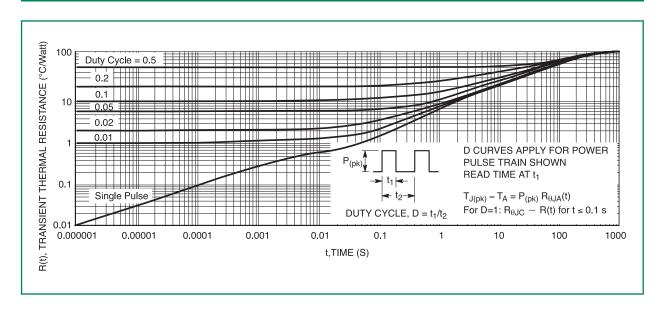
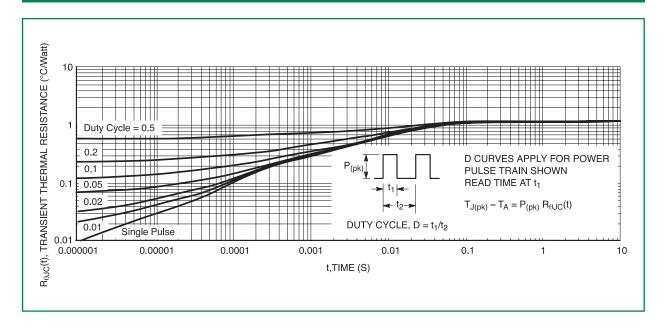
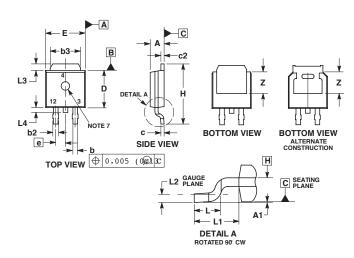
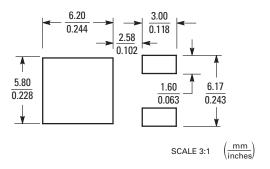
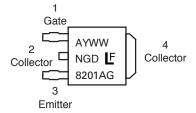




Figure 14. Best Case Transient Thermal Resistance (Non-normalized Junction-to-Case Mounted on Cold Plate)

Dimensions



Dim	Incl	nes	Millim	neters
Dim	Min	Max	Min	Max
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90 REF	
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

Soldering Footrpint

Part Marking System

NGD8201A = Device Code A= Assembly Location

Y= Year WW = Work Week <math>G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping†
NGD8201ANT4G	DPAK (Pb-Free)	2,500 / Tape & Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefluse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefluse.com/disclaimer-electronics.