MJD18002D2

Bipolar NPN Transistor High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector-Emitter Diode and Built-In Efficient Antisaturation Network

The MJD18002D2 is a state-of-the-art high speed, high gain bipolar transistor (H2BIP). Tight dynamic characteristics and lot to lot minimum spread ($\pm 150 \mathrm{~ns}$ on storage time) make it ideally suitable for light ballast applications. Therefore, there is no longer a need to guarantee an h_{FE} window.

Features

- Low Base Drive Requirement
- High Peak DC Current Gain (55 Typical) @ $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$
- Extremely Low Storage Time Min/Max Guarantees Due to the H2BIP Structure which Minimizes the Spread
- Integrated Collector-Emitter Free Wheeling Diode
- Fully Characterized and Guaranteed Dynamic V CEsat
- Characteristics Make It Suitable for PFC Application
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V

Machine Model, C > 400 V

- Six Sigma ${ }^{\circledR}$ Process Providing Tight and Reproductible Parameter Spreads
- $\mathrm{Pb}-$ Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\mathrm{CEO}}$	450	Vdc
Collector-Base Breakdown Voltage	$\mathrm{V}_{\mathrm{CBO}}$	1000	Vdc
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{CES}}$	1000	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	11	Vdc
Collector Current	- Continuous	I_{C}	2.0
	- Peak (Note 1)	I_{CM}	5.0
Base Current	- Continuous	I_{B}	1.0
	- Peak (Note 1)	I_{BM}	2.0

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	50	W
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	71.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width $=5.0 \mathrm{~ms}$, Duty Cycle $=10 \%$.

ON Semiconductor ${ }^{\oplus}$
http://onsemi.com

POWER TRANSISTOR 2 AMPERES 1000 VOLTS, 50 WATTS

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

Y = Year
WW = Work Week
18002D2 = Device Code
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping †
MJD18002D2T4	DPAK	3000/Tape \& Reel
MJD18002D2T4G	DPAK (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}$)		$\mathrm{V}_{\text {CEO(sus) }}$	450	570	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{l}_{\text {CBO }}=1 \mathrm{~mA}$)		$\mathrm{V}_{\text {CBO }}$	1000	1100	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\text {EBO }}=1 \mathrm{~mA}$)		$\mathrm{V}_{\text {Ebo }}$	11	14	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\text {CEO }}, \mathrm{I}_{\mathrm{B}}=0$)		$\mathrm{I}_{\text {CEO }}$	-	-	100	$\mu \mathrm{Adc}$
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\mathrm{CES}}, \mathrm{V}_{\mathrm{EB}}=0$) $\left(\mathrm{V}_{\mathrm{CE}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=0\right)$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ $@ T_{C}=125^{\circ} \mathrm{C}$	$I_{\text {ces }}$	-	-	$\begin{aligned} & \hline 100 \\ & 500 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter-Cutoff Current ($\mathrm{V}_{\mathrm{EB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0$)		IEBO	-	-	500	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Base-Emitter Saturation Voltage $\begin{aligned} & \left(I_{C}=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$V_{B E \text { (sat) }}$		$\begin{aligned} & 0.78 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$	Vdc
Collector-Emitter Saturation Voltage ($\mathrm{IC}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{mAdc}$) $\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right)$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CE (sat) }}$	-	$\begin{aligned} & 0.36 \\ & 0.50 \end{aligned}$	0.6 1.0	Vdc
	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 0.40 \\ & 0.65 \end{aligned}$	$\begin{gathered} 0.75 \\ 1.2 \end{gathered}$	
DC Current Gain$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{h}_{\text {FE }}$	14 8.0	$\begin{aligned} & 25 \\ & 15 \end{aligned}$	-	-
	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		6.0 4.0	10 6.0	-	

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth $\left(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}\right)$	f_{t}	-	13	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{ob}	-	50	100	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{EB}}=8 \mathrm{Vdc}\right)$	C_{ib}	-	340	500	pF

DIODE CHARACTERISTICS

$\begin{array}{r} \text { Forward Diode Voltage } \\ \left(\mathrm{I}_{\mathrm{EC}}=1.0 \mathrm{Adc}\right) \\ \left(\mathrm{I}_{\mathrm{EC}}=0.4 \mathrm{Adc}\right) \end{array}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	V_{EC}	-	1.2	1.5	Vdc
	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		-	1.0	1.3	
	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	0.6	-	
Forward Recovery Time$\begin{aligned} & \left(I_{\mathrm{F}}=0.4 \mathrm{Adc}, \mathrm{di} / \mathrm{dt}=10 \mathrm{~A} / \mathrm{\mu s}\right) \\ & \left(\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{Adc}, \mathrm{di} / \mathrm{dt}=10 \mathrm{~A} / \mathrm{us}\right) \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	t_{fr}	-	517	-	ns
	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		-	480	-	

DYNAMIC SATURATION VOLTAGE

Dynamic Saturation Voltage Determinated $1 \mu \mathrm{~s}$ and $3 \mu \mathrm{~s}$ respectively after rising $\mathrm{I}_{\mathrm{B} 1}$ reaches 90% of final $I_{B 1}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{Vdc} \\ & \hline \end{aligned}$	@ $1 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CE(dsat) }}$	-	7.4	-	V
		@ $3 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		-	2.5	-	
	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}$	@ $1 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		-	11.7	-	
	$V_{C C}=300 \mathrm{Vdc}$	@ $3 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		-	1.3	-	

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic			Symbol	Min	Typ	Max	Unit
SWITCHING CHARACTERISTICS: Resistive Load (D.C.S. 10%, Pulse Width $=40 \mu \mathrm{~s}$)							
Turn-on Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=40 \mathrm{mAdc} \\ \mathrm{I}_{\mathrm{B} 2}=200 \mathrm{mAdc} \\ \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{Vdc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	-	$\begin{aligned} & 225 \\ & 375 \end{aligned}$	350 -	ns
Turn-off Time		@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	0.8	$\overline{1.5}$	1.1 -	$\mu \mathrm{S}$
Turn-on Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 2}=0.5 \mathrm{Adc} \\ \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{Vdc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	-	$\begin{gathered} 100 \\ 94 \end{gathered}$	150 -	ns
Turn-off Time		$@ T_{C}=25^{\circ} \mathrm{C}$ @ $T_{C}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	0.95	${ }_{1.5}^{-}$	1.25	$\mu \mathrm{S}$

SWITCHING CHARACTERISTICS: Inductive Load ($\mathrm{V}_{\text {clamp }}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H}$)

Fall Time	$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =0.4 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 1} & =40 \mathrm{mAdc} \\ \mathrm{I}_{\mathrm{B} 2} & =0.2 \mathrm{Adc} \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{f}	-	$\begin{aligned} & 130 \\ & 120 \end{aligned}$	175	ns
Storage Time		@ $T_{C}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {s }}$	0.4	- 0.7	0.7 -	$\mu \mathrm{s}$
Cross-over Time		@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	-	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	175 -	ns
Fall Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=0.8 \mathrm{Adc} \\ \mathrm{I}_{\mathrm{B} 1}=160 \mathrm{mAdc} \\ \mathrm{I}_{\mathrm{B} 2}=160 \mathrm{mAdc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{f}	-	$\begin{aligned} & 130 \\ & 140 \end{aligned}$	175 -	ns
Storage Time		@ $T_{C}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {s }}$	2.1	3.0	2.4	$\mu \mathrm{S}$
Cross-over Time		@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	-	$\begin{aligned} & 275 \\ & 350 \end{aligned}$	350 -	ns
Fall Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 2}=0.5 \mathrm{Adc} \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{f}	-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	150 -	ns
Storage Time		@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {s }}$	-	$\begin{aligned} & 1.05 \\ & 1.45 \\ & \hline \end{aligned}$	1.2 -	$\mu \mathrm{S}$
Cross-over Time		@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	-	$\begin{aligned} & 100 \\ & 115 \end{aligned}$	150 -	ns

MJD18002D2

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ 1 V

Figure 3. Collector Saturation Region

Figure 5. Collector-Emitter Saturation Voltage

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 2. DC Current Gain @ 5 V

Figure 4. Collector-Emitter Saturation Voltage

Figure 6. Collector-Emitter Saturation Voltage

Figure 7. Base-Emitter Saturation Region $I_{C} / I_{B}=5$

Figure 9. Base-Emitter Saturation Region $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=20$

Figure 8. Base-Emitter Saturation Region $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=10$

Figure 10. Forward Diode Voltage

TYPICAL SWITCHING CHARACTERISTICS

Figure 11. Capacitance

Figure 12. Resistive Switch Time, t_{on}

TYPICAL SWITCHING CHARACTERISTICS

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 13. Resistive Switch Time, $\mathrm{t}_{\text {off }}$

Figure 15. Inductive Switching, $\mathrm{t}_{\mathrm{c}} \& \mathrm{t}_{\mathrm{fi}} @ \mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=5$

Figure 17. Inductive Fall Time

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 14. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}} @ \mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=5$

Figure 16. Inductive Storage Time

Figure 18. Inductive Cross-Over Time

TYPICAL SWITCHING CHARACTERISTICS

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 19. Inductive Switching Time, $t_{f i} \& T_{C} @ G=10$

Figure 21. Inductive Storage Time, t_{fi}

Figure 23. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 20. Inductive Switching Time, $\mathbf{t}_{\mathbf{s i}}$

Figure 22. Inductive Storage Time, $\mathbf{t}_{\mathbf{c}}$

Figure 24. Inductive Switching Measurements

MJD18002D2

Figure 25. Inductive Load Switching Drive Circuit

$\mathbf{V}_{\text {(BR)CEO(sus) }}$	Inductive Switching	RBSOA
$\mathrm{L}=10 \mathrm{mH}$	$\mathrm{L}=200 \mu \mathrm{H}$	$\mathrm{L}=500 \mu \mathrm{H}$
$\mathrm{R}_{\mathrm{B} 2}=\infty$	$\mathrm{R}_{\mathrm{B} 2}=0$	$\mathrm{R}_{\mathrm{B} 2}=0$
$\mathrm{~V}_{\mathrm{CC}}=20$ Volts	$\mathrm{V}_{\mathrm{CC}}=15$ Volts	$\mathrm{V}_{\mathrm{CC}}=15$ Volts
$\mathrm{I}_{\mathrm{C}(\mathrm{pk})}=100 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{B} 1}$ selected for	$\mathrm{R}_{\mathrm{B} 1}$ selected for
	desired $\mathrm{I}_{\mathrm{B} 1}$	desired $\mathrm{I}_{\mathrm{B} 1}$

Figure 26. t_{fr} Measurement

Figure 28. Reverse Bias Safe Operating Area

Figure 29. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 27 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second Breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on

Figure 27 may be found at any case temperature by using the appropriate curve on Figure 29.
$\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 30. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 28). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

Figure 30. Typical Thermal Response ($\mathrm{Z}_{\theta \mathrm{JC}}(\mathrm{t})$) for MJD18002D2

Figure 31. $\mathrm{B}_{\mathrm{VCER}}$

Figure 32. Forward Recovery Time, \mathbf{t}_{fr}

[^0]

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

SCALE 1:1

BOTTOM VIEW
ALTERNTE
CONSTRUCTIONS
notes:

1. Dimensioning and tolerancing per asme Y14.5M, 1994
2. CONTROLLING DIMENSION: INCHES.
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI. THERMAL PAD CONTOUR
4. DIMENSIONS D AND EDO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY
6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
c	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	
e	0.090	BSC	2.29	
HSC				
H	0.370	0.410	9.40	
L	0.055	0.070	10.41	
L1	0.114	REF	2.90	
L2	0.020	BSC	0.51	
L3	0.035	0.050		
L4	---	0.040	0.89	
\mathbf{Z}	0.155	---	1.27	

GENERIC
MARKING DIAGRAM*

Discrete

XXXXXX	$=$ Device Code
A	Assembly Location
L	= Wafer Lot
Y	Year
WW	Y Work Week
G	Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Fr} e \mathrm{i}$ indicator, " G " or microdot " * ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^1]onsemi, OnSEMi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: Six Sigma is a registered trademark and servicemark of Motorola, Inc.

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

