
STI18N65M2, STP18N65M2

N-channel 650 V, 0.275 Ω typ., 12 A MDmesh[™] M2 Power MOSFET in I²PAK and TO-220 packages

life.augmented

Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	V _{DS} R _{DS(on)} max	
STI18N65M2	650V	0.33Ω	12 A
STP18N65M2	000 V	0.3312	

Datasheet - production data

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LLC converters, resonant converters

Description

These devices are N-channel Power MOSFETs developed using MDmesh[™] M2 technology. Thanks to their strip layout and improved vertical structure, the devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

Table 1	Device	summary
---------	--------	---------

Order code	Marking	Package	Packaging
STI18N65M2	18N65M2	I ² PAK	Tube
STP18N65M2	TONOSIVIZ	TO-220	Tube

This is information on a product in full production.

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data 9
5	Revision history14

1

Electrical ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	12	А
Ι _D	Drain current (continuous) at $T_C = 100 \text{ °C}$	8	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	48	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	110	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Тj	Max. operating junction temperature	150	

Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area

2. I_{SD} $\,\leq$ 12 A, di/dt $\,\leq$ 400 A/µs; V_{DS \,\,peak} < V_(BR)DSS, V_DD=400 V.

3. $V_{DS} \leq 520V$

Table 3. Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal resistance junction-case max	1.14	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	0/00	

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	2	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	450	mJ

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	650			V
1	Zero gate voltage	V _{DS} = 650 V			1	μA
I_{DSS} drain current ($V_{GS} = 0$)	V _{DS} = 650 V, T _C = 125 °C			100	μA	
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 6 A		0.275	0.33	Ω

Table 5	. On /off	states
---------	-----------	--------

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	770	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	35	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	1.2	-	pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	175	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	6.1	-	Ω
Qg	Total gate charge		-	20	-	nC
Q _{gs}	Gate-source charge	$V_{DD} = 520 \text{ V}, I_D = 12 \text{ A},$ $V_{GS} = 10 \text{ V} \text{ (see Figure 15)}$	-	3.6	-	nC
Q _{gd}	Gate-drain charge		-	8.5	-	nC

1. $C_{oss eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7	7. Switcl	hing times
---------	-----------	------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _d (on)	Turn-on delay time	$V_{DD} = 325 \text{ V}, \text{ I}_{D} = 6 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 14</i> and <i>Figure 19</i>)	-	11	-	ns
t _r	Rise time		-	7.5	-	ns
t _d (off)	Turn-off delay time		-	46	-	ns
t _f	Fall time		-	12.5	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		12	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	-		48	А	
V _{SD} ⁽²⁾	Forward on voltage $I_{SD} = 12 \text{ A}, V_{GS} = 0 \text{ V}$		-		1.6	V
t _{rr}	Reverse recovery time		-	331		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V} (\text{see Figure 16})$	-	3.4		μC
I _{RRM}	Reverse recovery current		-	20.5		А
t _{rr}	Reverse recovery time	I _{SD} = 12 A, di/dt = 100 A/µs	-	462		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	4.6		μC
I _{RRM}	Reverse recovery current	(see Figure 16)	-	20		А

Table 8. Source drain diode

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

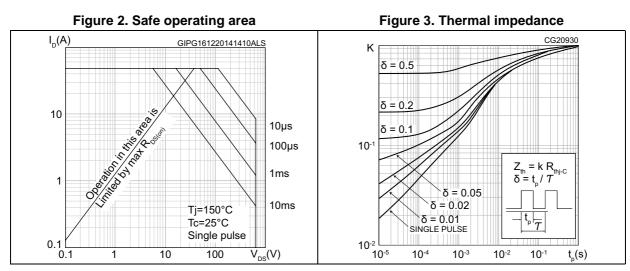
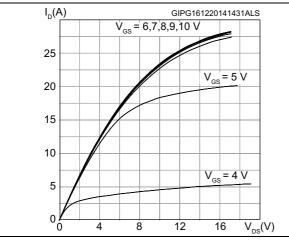
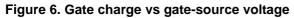




Figure 4. Output characteristics

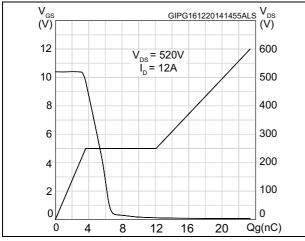
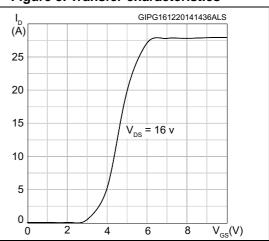
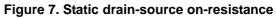
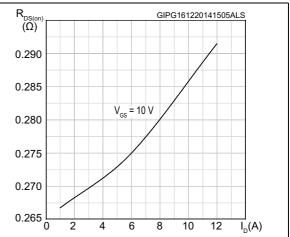





Figure 5. Transfer characteristics

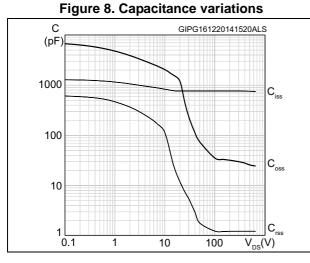


Figure 10. Normalized gate threshold voltage vs temperature

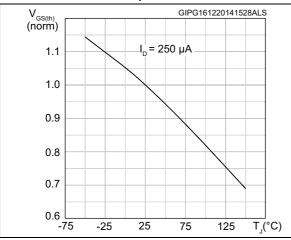


Figure 12. Source-drain diode forward characteristics

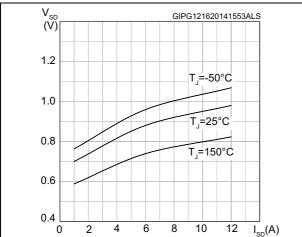


Figure 9. Output capacitance stored energy

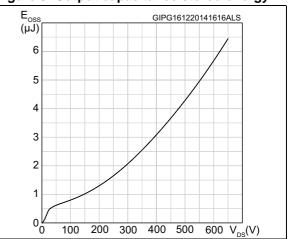


Figure 11. Normalized on-resistance vs temperature

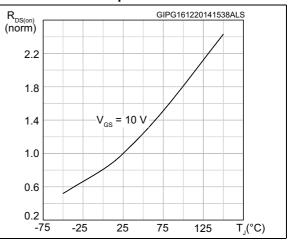
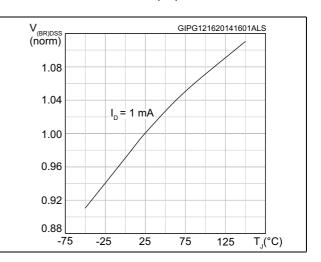



Figure 13. Normalized V_{(BR)DSS} vs temperature

3 Test circuits

Figure 14. Switching times test circuit for resistive load

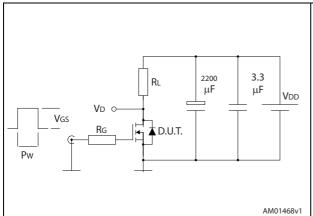
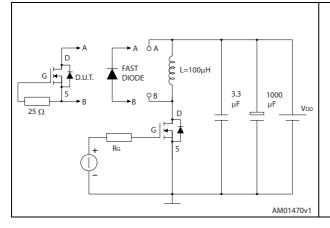
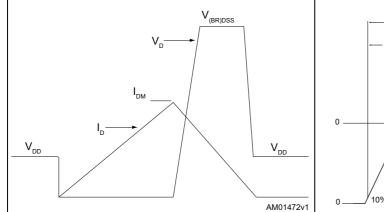
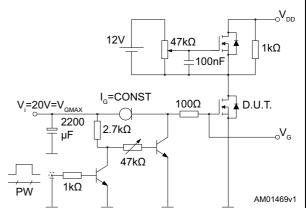
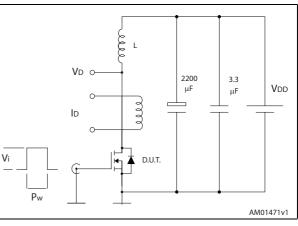
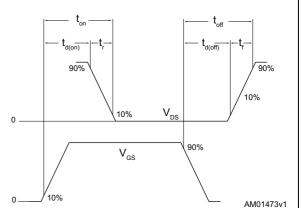


Figure 16. Test circuit for inductive load switching and diode recovery times


Figure 18. Unclamped inductive waveform


Figure 15. Gate charge test circuit

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

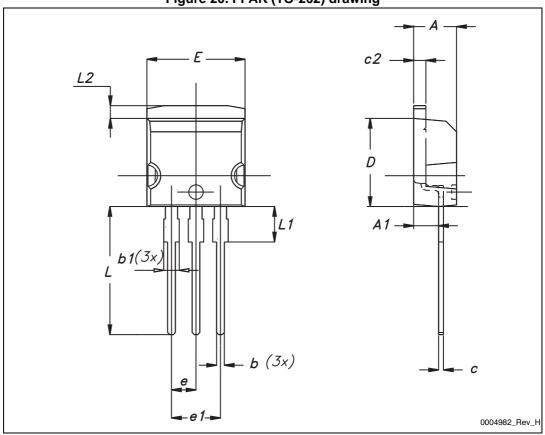


Figure 20. I²PAK (TO-262) drawing

10/15

5.04	mm.		
DIM.	min.	typ	max.
А	4.40		4.60
A1	2.40		2.72
b	0.61		0.88
b1	1.14		1.70
С	0.49		0.70
c2	1.23		1.32
D	8.95		9.35
е	2.40		2.70
e1	4.95		5.15
E	10		10.40
L	13		14
L1	3.50		3.93
L2	1.27		1.40

Table 9. I²PAK (TO-262) mechanical data

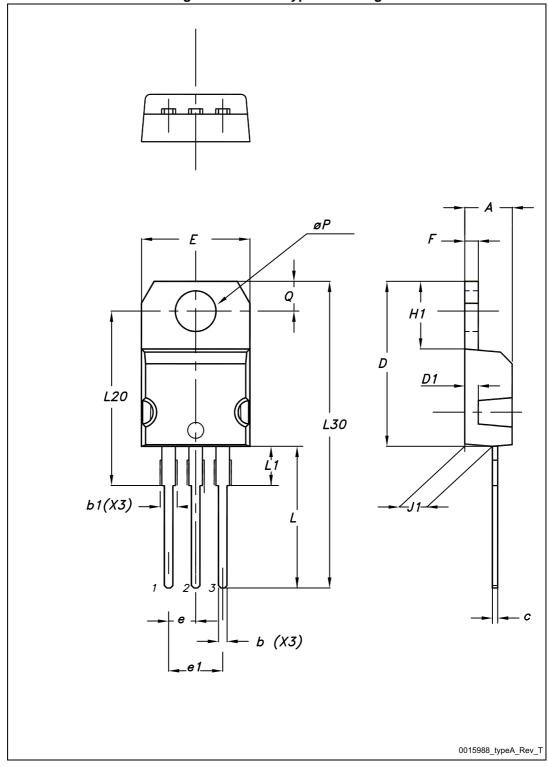


Figure 21. TO-220 type A drawing

	mm		
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
Øр	3.75		3.85
Q	2.65		2.95

Table 10. TO-220 type A mechanical data

5 Revision history

Date	Revision	Changes
16-Dec-2014	1	First release.
09-Jan-2015	2	Text edits throughout document Updated <i>Figure 6: Gate charge vs gate-source voltage</i>

Table 11. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

