

Datasheet

Trench gate field-stop 600 V, 30 A high speed HB series IGBT

Product status link

STGB30H60DFB STGP30H60DFB

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: $V_{CE(sat)}$ = 1.55 V (typ.) @ I_C = 30 A
- Tight parameter distribution
- Safe paralleling
- Positive V_{CE(sat)} temperature coefficient
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverters
- High frequency converters

Description

These devices are IGBTs developed using an advanced proprietary trench gate fieldstop structure. These devices are part of the new HB series of IGBTs, which represent an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive V_{CE(sat)} temperature coefficient and very tight parameter distribution result in safer paralleling operation.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0 V)	600	V
1-	Continuous collector current at T _C = 25 °C	60	
I _C	Continuous collector current at T _C = 100 °C	30	Α
I _{CP} ⁽¹⁾	Pulsed collector current	120	
V _{GE}	Gate-emitter voltage	±20	V
V GE	Transient gate-emitter voltage	±30	_ v
I _F	Continuous forward current at T _C = 25 °C	60	
'F	Continuous forward current at T _C = 100 °C	30	Α
I _{FP} (1)	Pulsed forward current	120	
P _{TOT}	Total power dissipation at T _C = 25 °C	260	W
T _{STG}	Storage temperature range	- 55 to 150	°C
T _J	Operating junction temperature range	- 55 to 175	

^{1.} Pulse width limited by maximum junction temperature.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	0.58	
R _{thJC}	Thermal resistance junction-case diode	2.08	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 3. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V _{GE} = 0 V, I _C = 2 mA	600			V
		V _{GE} = 15 V, I _C = 30 A		1.55	2	
$V_{\text{CE}(\text{sat})}$	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 125 °C		1.65		V
	, same	V _{GE} = 15 V, I _C = 30 A, T _J = 175 °C		1.75		
	Forward on-voltage	I _F = 30 A		2	2.6	
V _F		I _F = 30 A, T _J = 125 °C		1.7		V
		I _F = 30 A, T _J = 175 °C		1.6		
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 1 mA	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 600 V			25	μA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V			±250	nA

Table 4. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	3659	-	
C _{oes}	Output capacitance	V_{CE} = 25 V, f = 1 MHz, V_{GE} = 0 V	-	101	-	pF
C _{res}	Reverse transfer capacitance		-	76	-	
Qg	Total gate charge	V _{CC} = 520 V, I _C = 30 A, V _{GE} = 0 to 15 V (see Figure 28. Gate charge test circuit)	-	149	-	
Q _{ge}	Gate-emitter charge		-	25	-	nC
Q _{gc}	Gate-collector charge	,	-	62	-	

DS10468 - Rev 3 page 3/21

Table 5. IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	37	-	
t _r	Current rise time		-	14.6	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 30 A, V _{GE} = 15 V,	-	1643	-	A/µs
t _{d(off)}	Turn-off-delay time		-	146	-	
t _f	Current fall time	R_G = 10 Ω (see Figure 27. Test circuit for inductive load switching)	-	23	-	ns
E _{on} (1)	Turn-on switching energy		-	383	-	
E _{off} (2)	Turn-off switching energy		-	293	-	μJ
E _{ts}	Total switching energy		-	676	-	
t _{d(on)}	Turn-on delay time		-	35	-	
t _r	Current rise time		-	16.1	-	ns
(di/dt) _{on}	Turn-on current slope		-	1496	-	A/µs
t _{d(off)}	Turn-off-delay time	V _{CE} = 400 V, I _C = 30 A, V _{GE} = 15 V,	-	158	-	
t _f	Current fall time	$R_G = 10 \Omega$, $T_J = 175 ^{\circ}C$ (see Figure 27. Test circuit for inductive load switching)	-	65	-	ns
E _{on} (1)	Turn-on switching energy		-	794	-	
E _{off} (2)	Turn-off switching energy		-	572	-	μJ
E _{ts}	Total switching energy		_	1366	-	

^{1.} Including the reverse recovery of the diode.

Table 6. Diode switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	53	-	ns
Q _{rr}	Reverse recovery charge	I _F = 30 A, V _R = 400 V, V _{GE} = 15 V, di/dt = 1000 A/µs (see Figure 27. Test circuit for inductive load switching)	-	384	-	nC
I _{rrm}	Reverse recovery current		-	14.5	-	Α
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t _b		-	788	-	A/µs
E _{rr}	Reverse recovery energy		-	104	-	μJ
t _{rr}	Reverse recovery time		-	104	-	ns
Q _{rr}	Reverse recovery charge	I _F = 30 A, V _R = 400 V, V _{GE} = 15 V,	-	1352	-	nC
I _{rrm}	Reverse recovery current	di/dt = 1000 A/μs, T _J = 175 °C (see Figure 27. Test circuit for inductive load switching)	-	26	-	Α
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t _b		-	310	-	A/µs
Err	Reverse recovery energy		-	407	-	μJ

DS10468 - Rev 3 page 4/21

^{2.} Including the tail of the collector current.

2.1 Electrical characteristics (curves)

Figure 1. Power dissipation vs case temperature

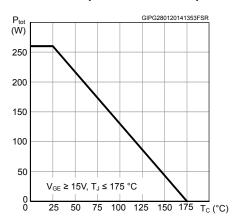


Figure 2. Collector current vs case temperature

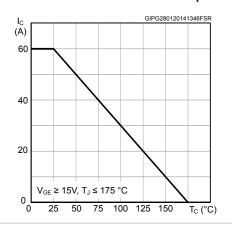


Figure 3. Output characteristics (T_J = 25 °C)

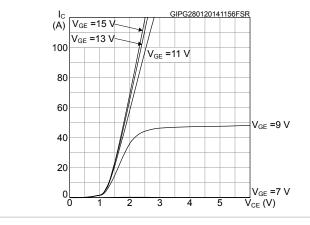


Figure 4. Output characteristics (T_J = 175 °C)

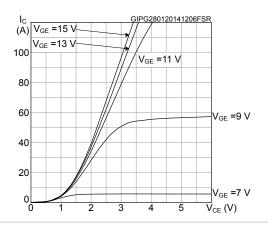


Figure 5. V_{CE(sat)} vs junction temperature

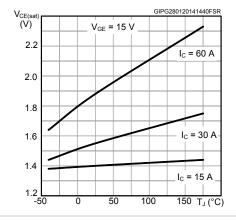
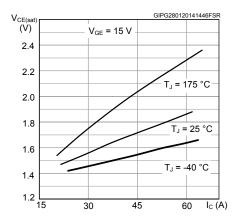



Figure 6. V_{CE(sat)} vs collector current

DS10468 - Rev 3 page 5/21

Figure 7. Collector current vs switching frequency

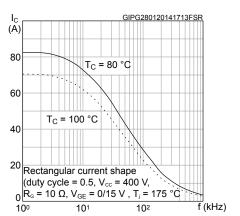


Figure 8. Forward bias safe operating area

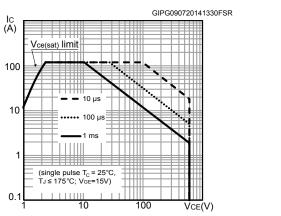


Figure 9. Transfer characteristics

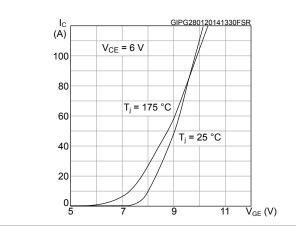


Figure 10. Diode V_F vs forward current

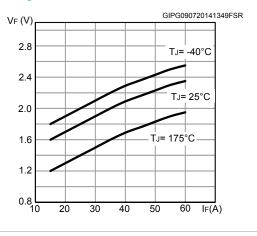


Figure 11. Normalized $V_{GE(th)}$ vs junction temperature

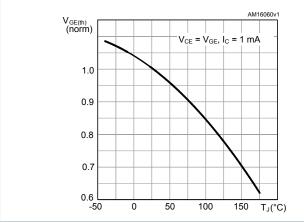
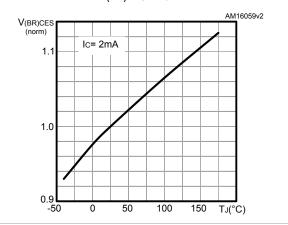



Figure 12. Normalized $V_{(BR)CES}$ vs junction temperature

DS10468 - Rev 3 page 6/21

Figure 13. Capacitance variations

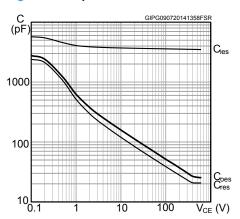


Figure 14. Gate charge vs. gate-emitter voltage

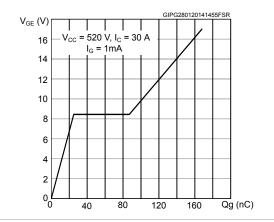


Figure 15. Switching energy vs collector current

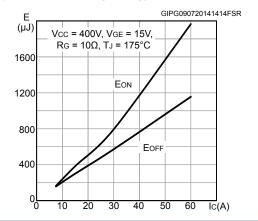


Figure 16. Switching energy vs gate resistance

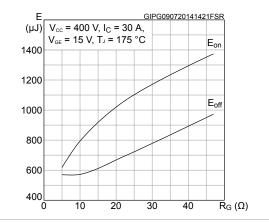


Figure 17. Switching energy vs temperature

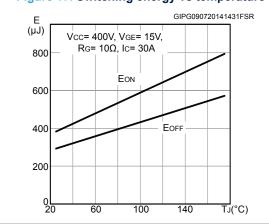
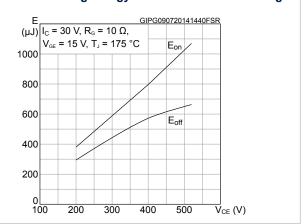



Figure 18. Switching energy vs collector emitter voltage

DS10468 - Rev 3 page 7/21

Figure 19. Switching times vs collector current

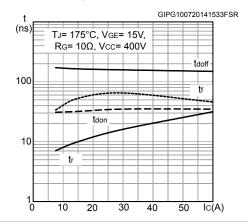


Figure 20. Switching times vs gate resistance

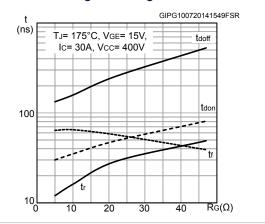


Figure 21. Reverse recovery current vs diode current slope

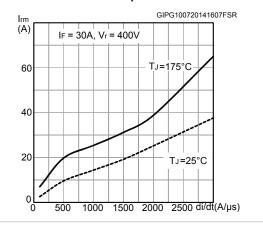


Figure 22. Reverse recovery time vs diode current slope

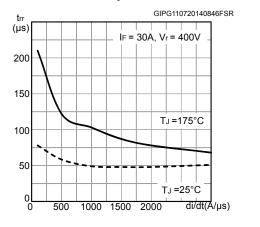
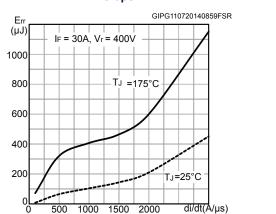
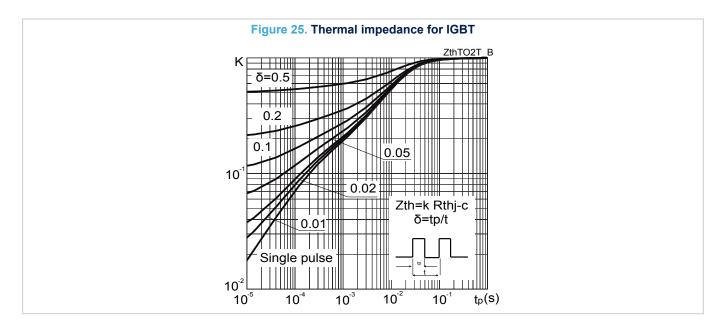
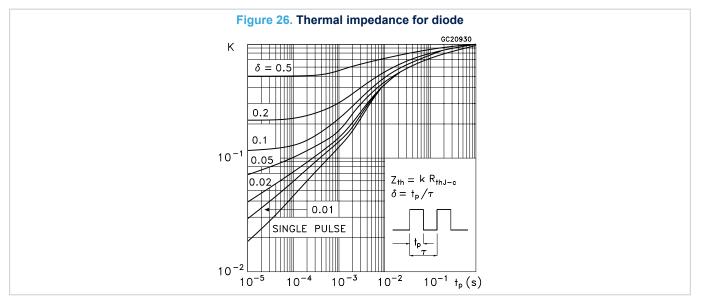


Figure 23. Reverse recovery charge vs diode current slope


Figure 24. Reverse recovery energy vs diode current slope

DS10468 - Rev 3 page 8/21

DS10468 - Rev 3 page 9/21

3 Test circuits

Figure 27. Test circuit for inductive load switching

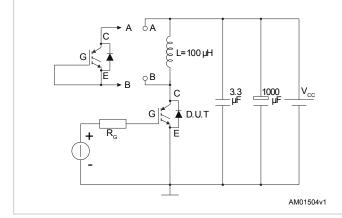
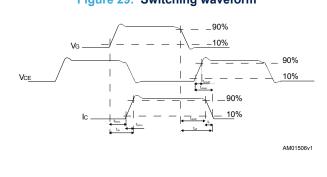
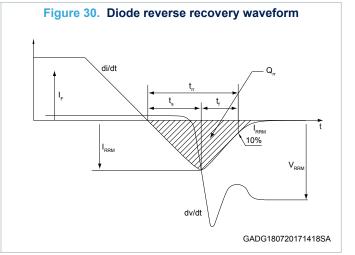


Figure 28. Gate charge test circuit

V₁ = 20V = V_{GMAX}


V_G


V_G

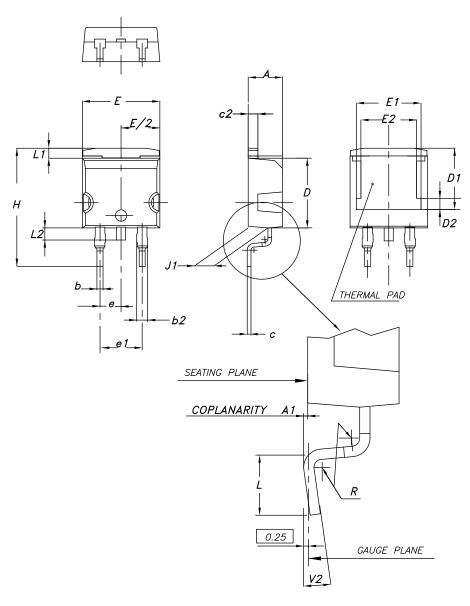
V_G

AM01505v1

Figure 29. Switching waveform

DS10468 - Rev 3 page 10/21

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS10468 - Rev 3 page 11/21

4.1 D²PAK (TO-263) type A2 package information

Figure 31. D²PAK (TO-263) type A2 package outline

0079457_A2_26

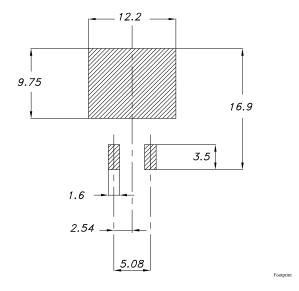
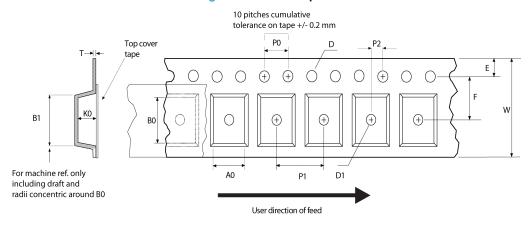
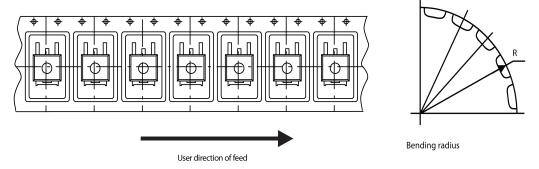

DS10468 - Rev 3 page 12/21

Table 7. D²PAK (TO-263) type A2 package mechanical data

Div	mm				
Dim.	Min.	Тур.	Max.		
А	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50	7.75	8.00		
D2	1.10	1.30	1.50		
E	10.00		10.40		
E1	8.70	8.90	9.10		
E2	7.30	7.50	7.70		
е		2.54			
e1	4.88		5.28		
Н	15.00		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.40			
V2	0°		8°		

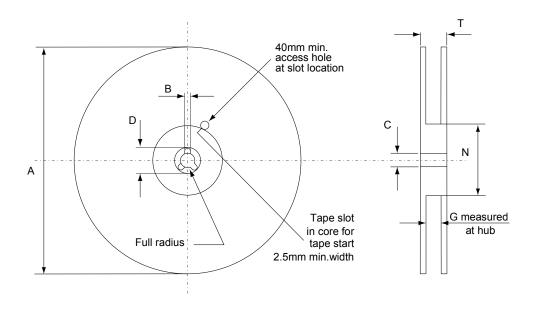
Figure 32. D²PAK (TO-263) recommended footprint (dimensions are in mm)




DS10468 - Rev 3 page 13/21

4.2 D²PAK packing information

Figure 33. D²PAK tape outline



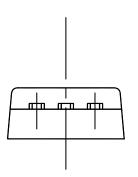
AM08852v1

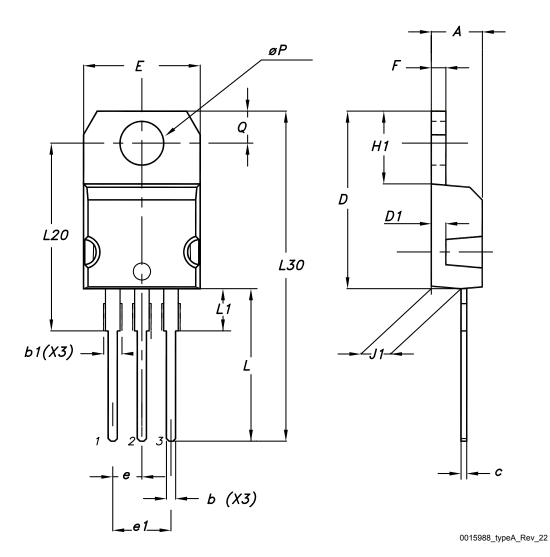
DS10468 - Rev 3 page 14/21

Figure 34. D²PAK reel outline

AM06038v1

Table 8. D²PAK tape and reel mechanical data


	Таре			Reel		
Dim.	mm		Dim.	mm		
Dim.	Min.	Max.	J DIM.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base qu	uantity	1000	
P2	1.9	2.1	Bulk qu	uantity	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				


DS10468 - Rev 3 page 15/21

4.3 TO-220 type A package information

Figure 35. TO-220 type A package outline

DS10468 - Rev 3 page 16/21

Table 9. TO-220 type A package mechanical data

Dim.	mm				
DIM.	Min.	Тур.	Max.		
A	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.55		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10.00		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13.00		14.00		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
øΡ	3.75		3.85		
Q	2.65		2.95		

DS10468 - Rev 3 page 17/21

5 Ordering information

Table 10. Order codes

Order code	Marking	Package	Packing
STGB30H60DFB	GB30H60DFB	D²PAK	Tape and reel
STGP30H60DFB	GP30H60DFB	TO-220	Tube

DS10468 - Rev 3 page 18/21

Revision history

Table 11. Document revision history

Date	Revision	Changes
07-Aug-2014	1	Initial release.
28-Oct-2015	2	Updated Figure 23 and Section 5.
28-Oct-2015	2	Minor text changes.
23-May-2019	3	Modified Figure 3. Output characteristics (T_J = 25 °C), Figure 4. Output characteristics (T_J = 175 °C), Figure 9. Transfer characteristics, Figure 7. Collector current vs switching frequency, Figure 18. Switching energy vs collector emitter voltage. Minor text changes.

DS10468 - Rev 3 page 19/21

Contents

1	Elec	Electrical ratings					
2	Electrical characteristics						
	2.1	Electrical characteristics (curves)	5				
3	Test	circuits	10				
4	Pac	kage mechanical data	11				
	4.1	D²PAK (TO-263) type A2 package information	11				
	4.2	D²PAK packing information	13				
	4.3	TO-220 type A package information	15				
5	Ord	ering information	18				
Rev	ision	history	19				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS10468 - Rev 3 page 21/21