
T810T-8FP

8 A logic level Triac

Datasheet - production data

life.augmented

Description

Available in through-hole full pack package, the T810T-8FP Triac can be used for the on/off or phase angle control function in general purpose AC switching. This device can be directly driven by a microcontroller due to its 10 mA gate current requirement. Provide UL certified insulation rated at 2000 VRMS.

Symbol	Value	Unit
I _{T(rms)}	8	A
V _{DRM} , V _{RRM}	800	V
V _{DSM} , V _{RSM}	900	V
I _{GT}	10	mA

Features

- Medium current Triac
- Three quadrants
- ECOPACK[®]2 and RoHS compliant component
- Complies with UL standards (File ref: E81734)
- High performance Triac:
 - High T_i family
 - High dl/dt family
 - High dV/dt family
- Insulated package TO-220FPAB:
 - Insulated voltage: 2000 VRMS

Applications

- General purpose AC line load switching
- Motor control circuits
- Small home appliances
- Lighting
- Inrush current limiting circuits
- Overvoltage crowbar protection

February 2015

DocID025736 Rev 2

www.st.com

1 Characteristics

Symbol	Paramete	Value	Unit			
I _{T(rms)}	On-state rms current (full sine wave)	$T_c = 113^{\circ}C$	8	А	
Ι.	Non repetitive surge peak on-state			60	А	
I _{TSM}	current (full cycle, T_j initial = 25 °C)	F = 60 Hz	t = 16.7 ms	63	A	
l²t	$I^{2}t$ value for fusing, T_{j} initial = 25 °C		t _p = 10 ms	24	A²s	
V _{DRM} ,	Popotitivo surgo poak offictato volta	T _j = 150 °C	600	V		
V _{RRM}	RM, Repetitive surge peak off-state voltage		T _j = 125 °C	800	v	
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state	surge peak off-state voltage t _p = 10 ms				
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100$ ns	F = 100 Hz		100	A/µs	
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 150 °C	4	А	
P _{G(AV)}	Average gate power dissipation	1	W			
T _{stg}	Storage junction temperature range	- 40 to + 150	°C			
Тj	Operating junction temperature range	- 40 to + 150				
ΤL	Maximum lead temperature for sold	ering during	10 s	260	°C	
V _{ins}	Insulation rms voltage, 1 minute			2	kV	

Symbol	Test conditions	Quadrant		Value	Unit
I _{GT} ⁽¹⁾	$V_{\rm D} = 12 \text{ V}, \text{ R}_{\rm I} = 30 \Omega$	1 - 11 - 111	Min.	0.5	mA
'GT`´	$v_{\rm D} = 12 v, n_{\rm L} = 30.32$	1 - 11 - 111	Max.	10	mA
V _{GT}	V_D = 12 V, R_L = 30 Ω	1 - 11 - 111	Max.	1.3	V
V _{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k} \Omega, T_j = 150 \text{ °C}$	1 - 11 - 111	Min.	0.2	V
I _H ⁽¹⁾	I _T = 500 mA		Max.	15	mA
1	I _G = 1.2 I _{GT}	1 - 111	Max.	20	mA
۱L		II	Max.	25	mA
dV/dt ⁽¹⁾	$V_D = V_R = 536 V$, gate open	T _j = 125 °C	Min.	250	V/µs
	$V_D = V_R = 402 V$, gate open	T _j = 150 °C	IVIII I.	170	V/µs
(dl/dt)c ⁽¹⁾	(dV/dt)c = 0.1 V/µs	T _j = 125 °C	Min.	6.0	A/ms
		T _j = 150 °C	IVIIII.	4.2	
(dl/dt)c ⁽¹⁾	(dV/dt)c = 10 V/uc	T _j = 125 °C	Min.	3.2	A/ms
	(dV/dt)c = 10 V/µs	T _j = 150 °C	11111.	1.4	

1. For both polarities of A2 referenced to A1

Symbol	Test conditions			Value	Unit
$V_{T}^{(1)}$	I _{TM} = 11.3 A, t _p = 380 μs	T _j = 25 °C	Max.	1.55	V
V _{t0} ⁽¹⁾	Threshold voltage	T _j = 150 °C	Max.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 150 °C	Max.	57	mΩ
		T _j = 25 °C	Max.	5	μA
	$V_{DRM} = V_{RRM} = 800 V$	T _j = 125 °C	wax.	0.8	
IRRM	$V_{\text{DRM}} = V_{\text{RRM}} = 600 \text{ V}$	T _j = 150 °C	Max.	2.4	mA

Table 4. Static characteristics

1. For both polarities of A2 referenced to A1

Table	5.	Thermal	resistance
-------	----	---------	------------

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case (AC)	3.8	°C/W
R _{th(j-a)}	Junction to ambient (DC)	60	°C/W

Figure 1. Maximum power dissipation versus on-state rms current (full cycle)

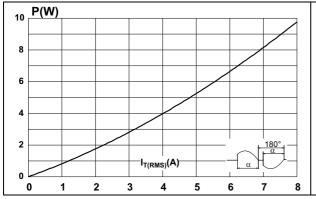
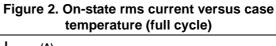
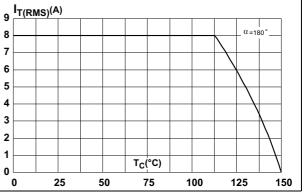
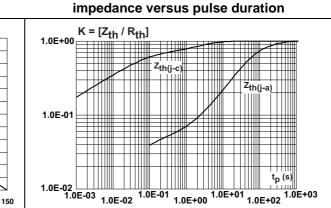
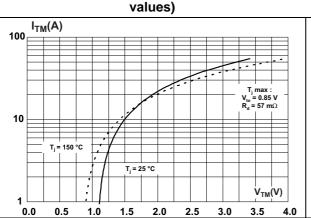
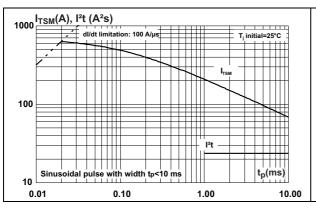
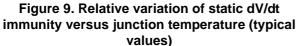



Figure 3. On-state rms current versus ambient temperature (free air convection)


Figure 4. Relative variation of thermal


I_{T(RMS)}(A) 3.0 α **= 180**° 2.5 2.0 1.5 1.0 0.5 ⁻T_a(°C) 0.0 l 0 25 75 100 125 50



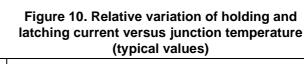

DocID025736 Rev 2



Figure 7. Non repetitive surge peak on-state current and corresponding values of l²t

Figure 6. Surge peak on-state current versus number of cycles

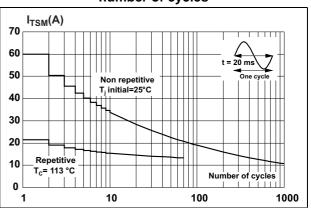
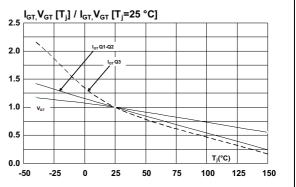
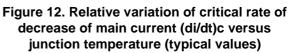



Figure 8. Relative variation of gate trigger current and gate voltage versus junction



Downloaded from Arrow.com.

temperature (typical values)

Figure 11. Relative variation of critical rate of decrease of main current (di/dt)c versus reapplied (dV/dt)c (typical values)

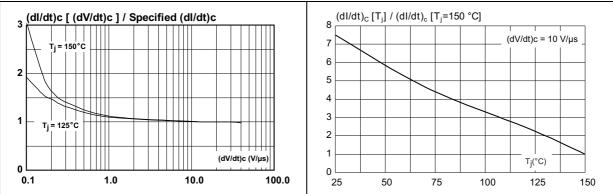
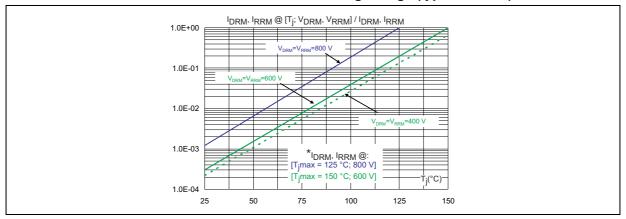
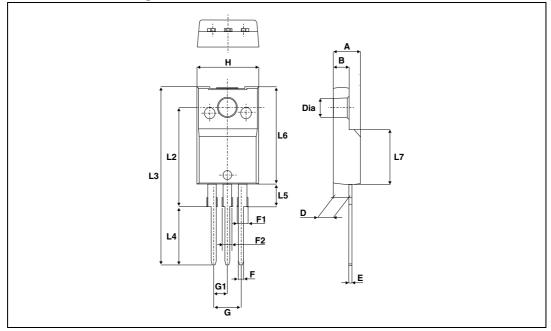



Figure 13. Relative variation of leakage current versus junction temperature for different values of blocking voltage (typical values)



2 Package information

- Epoxy meets UL94, V0
- Lead-free package
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

	Dimensions							
Ref.	Millim		Incl	hes				
	Min.	Max.	Min.	Max.				
А	4.4	4.6	0.173	0.181				
В	2.5	2.7	0.098	0.106				
D	2.5	2.75	0.098	0.108				
E	0.45	0.70	0.018	0.027				
F	0.75	1	0.030	0.039				
F1	1.15	1.70	0.045	0.067				
F2	1.15	1.70	0.045	0.067				
G	4.95	5.20	0.195	0.205				
G1	2.4	2.7	0.094	0.106				
Н	10	10.4	0.393	0.409				
L2	16	16 Тур.		Тур.				
L3	28.6	30.6	1.126	1.205				
L4	9.8	10.6	0.386	0.417				
L5	2.9	3.6	0.114	0.142				
L6	15.9	16.4	0.626	0.646				
L7	9.00	9.30	0.354	0.366				
Dia.	3.00	3.20	0.118	0.126				

Table 6. TO-220FPAB dimension values

3 Ordering information

		8 I	10 T	- 8 - 1	B FP
Triac					
Current					
8 = 8 A					
Gate sensitivity					
10 = 10 mA					
Specific application					
T = Increased (dl/dt)c and dV/dt producing reduced	TSM				
Voltage (V _{DRM} , V _{RRM}) 8 = 800 V					
Package FP = TO-220FPAB					

Figure 15. Ordering information scheme

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T810T-8FP	T810T-8FP	TO-220FPAB	2.0 g	50	Tube

4 Revision history

Table 8. Document	revision history
-------------------	------------------

Date	Revision	Changes	
05-Feb-2014	1	Initial release.	
12-Feb-2015	2	Updated Features and Table 2.	

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

DocID025736 Rev 2