

STD2N105K5, STP2N105K5, STU2N105K5

N-channel 1050 V, 6 Ω typ., 1.5 A MDmesh[™] K5 Power MOSFETs in DPAK, TO-220 and IPAK packages

Figure 1. Internal schematic diagram

Features

Order codes	V _{DS}	R _{DS(on)} max	I _D	P _{TOT}
STD2N105K5				
STP2N105K5	1050 V	8 Ω	1.5 A	60 W
STU2N105K5				

Datasheet - production data

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

These very high voltage N-channel Power MOSFETs are designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table	1.	Device	summary
-------	----	--------	---------

Order codes	Marking	Package	Packaging
STD2N105K5		DPAK	Tape and reel
STP2N105K5	2N105K5	TO-220	Tube
STU2N105K5		IPAK	Tube

This is information on a product in full production.

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves) 6
3	Test circuits
4	Package mechanical data 10
	4.1 DPAK, STD2N105K511
	4.2 TO-220, STP2N105K5 14
	4.3 IPAK, STU2N105K5 16
5	Packaging mechanical data 18
6	Revision history

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	±30	V
۱ _D	Drain current (continuous) at T _C = 25 °C	1.5	А
I _D	Drain current (continuous) at T _C = 100 °C	0.95	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	6	A
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	60	W
I _{AR}	Max current during repetitive or single pulse avalanche	0.5	A
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D=0.5$ A, $V_{DD}=50$ V)	90	mJ
dv/dt (2)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

Table 2. Abs	olute ma	aximum	ratings
--------------	----------	--------	---------

1. Pulse width limited by safe operating area.

2. $I_{SD} \leq$ 1.5 A, di/dt \leq 100 A/µs, $V_{DS(peak)} \leq V_{(BR)DSS}$.

3. $V_{DS} \le 840 \text{ V}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2.08	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.50	°C/W

2 Electrical characteristics

(Tcase =25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{\rm D} = 1 \text{ mA}, V_{\rm GS} = 0$	1050			V
1	Zero gate voltage,	V _{DS} = 1050 V			1	μA
I _{DSS}	drain current ($V_{GS} = 0$)	V _{DS} = 1050 V, T _C =125 °C			50	μA
I _{GSS}	Gate-body leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 0.75 A		6	8	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	115	-	pF
C _{oss}	Output capacitance	V _{DS} =100 V, f=1 MHz, V _{GS} =0	-	15	-	pF
C _{rss}	Reverse transfer capacitance		-	0.5	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{GS} = 0, V _{DS} = 0 to 840 V	-	17	-	pF
$C_{o(er)}^{(2)}$	Equivalent capacitance energy related	$v_{\rm GS} = 0, v_{\rm DS} = 0.0040$ v	-	6	-	pF
R_G	Intrinsic gate resistance	f = 1 MHz open drain	-	20	-	Ω
Qg	Total gate charge	V _{DD} = 840 V, I _D = 1.5 A	-	10	-	nC
Q _{gs}	Gate-source charge	V _{GS} =10 V	-	1.5	-	nC
Q _{gd}	Gate-drain charge	(see Figure 18)	-	8	-	nC

1. Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time		-	14.5	-	ns
t _r	Rise time	V _{DD} = 525 V, I _D = 0.75 A, R _G = 4.7 Ω, V _{GS} = 10 V	-	8.5	-	ns
t _{d(off)}	Turn-off-delay time	(see Figure 17)	-	35	-	ns
t _f	Fall time		-	38.5	-	ns

Table 6. Switching times

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		-		1.5	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		6	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 1.5 \text{ A}, V_{GS} = 0$	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 1.5 A, di/dt = 100 A/µs	-	326		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	1.19		μC
I _{RRM}	Reverse recovery current	(see Figure 19)	-	7.3		А
t _{rr}	Reverse recovery time	I _{SD} = 1.5 A, di/dt = 100 A/µs	-	525		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V T _J = 150 °C	-	1.83		μC
I _{RRM}	Reverse recovery current	(see Figure 19)	-	7		А

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%

	Table 8.	Gate-source	Zener	diode
--	----------	-------------	-------	-------

ĺ	Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
	V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1$ mA, $I_{D}=0$	30	-	-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance the device's ESD capability. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Downloaded from Arrow.com.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for DPAK and

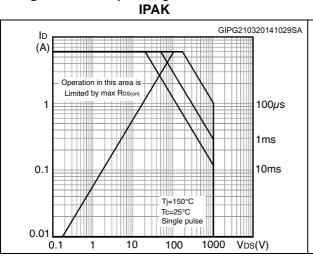


Figure 4. Safe operating area for TO-220

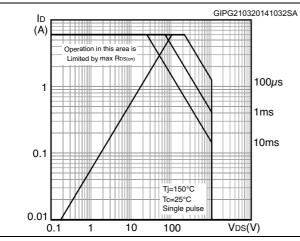


Figure 6. Output characteristics

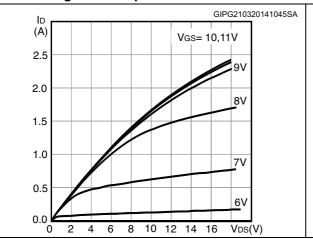
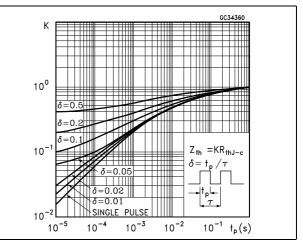
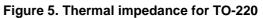




Figure 3. Thermal impedance for DPAK and IPAK

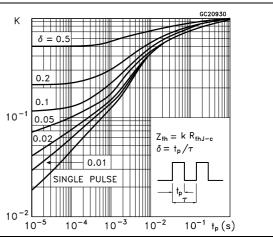
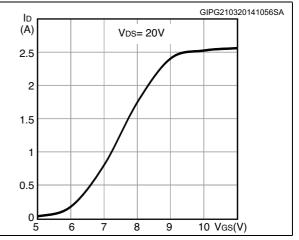



Figure 7. Transfer characteristics

Figure 8. Gate charge vs gate-source voltage

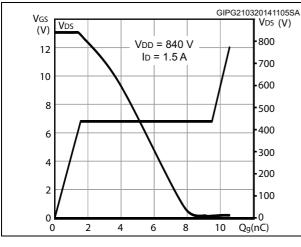


Figure 10. Capacitance variations

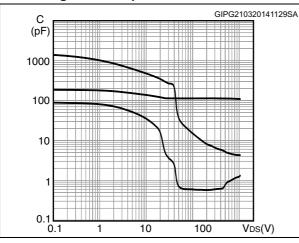
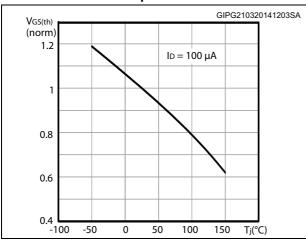
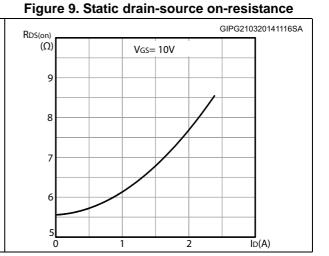




Figure 12. Normalized gate threshold voltage vs temperature

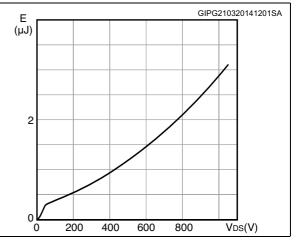
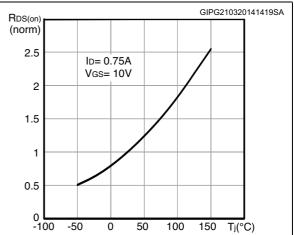
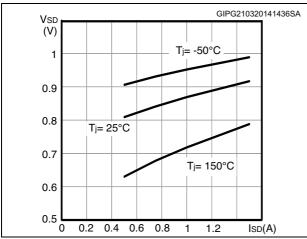
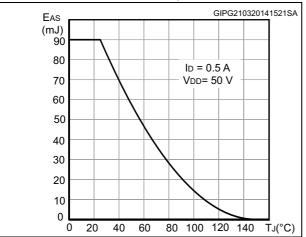


Figure 13. Normalized on-resistance vs temperature

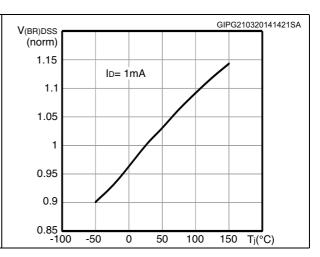


Figure 14. Source-drain diode forward characteristics

Figure 16.Maximum avalanche energy vs starting T_J

Figure 15. Normalized $V_{(BR)DSS}$ vs temperature

Test circuits 3

Figure 17. Switching times test circuit for resistive load

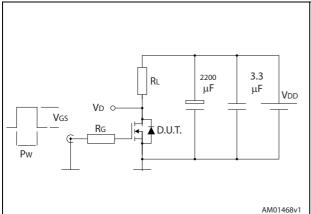
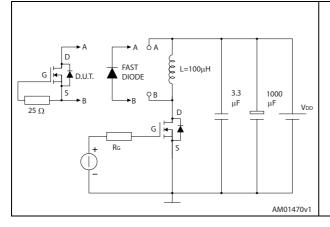
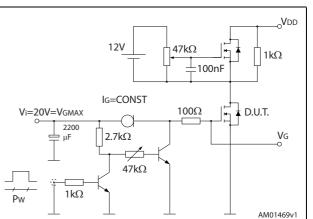
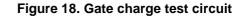


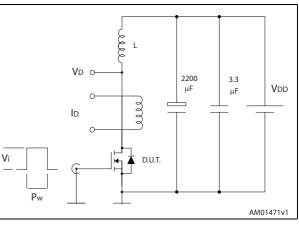
Figure 19. Test circuit for inductive load switching and diode recovery times

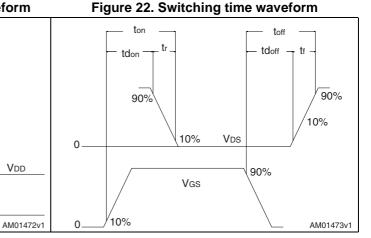



Figure 21. Unclamped inductive waveform


VD

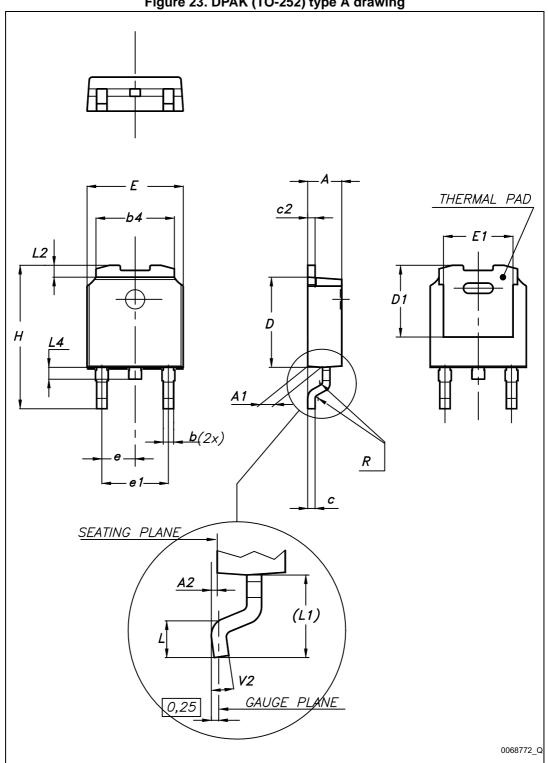
ldм


lр


V(BR)DSS

Vdd

DocID026321 Rev 3


Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

DPAK, STD2N105K5 4.1

Figure 23. DPAK (TO-252) type A drawing

Dim	mm				
Dim. —	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
с	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
н	9.35		10.10		
L	1.00		1.50		
L1		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Table 9. DPAK (TO-252) type A mechanical data

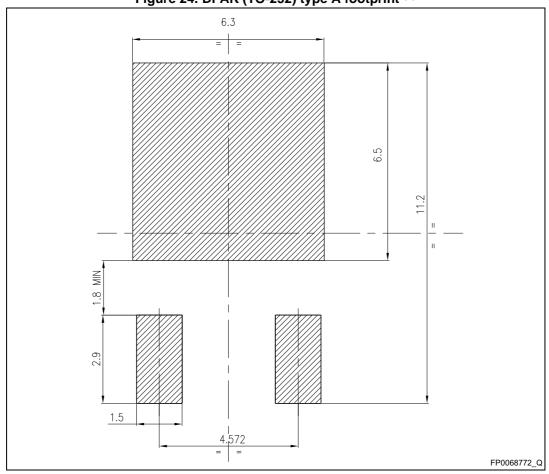


Figure 24. DPAK (TO-252) type A footprint ^(a)

a. All dimensions are in millimeters

4.2 TO-220, STP2N105K5

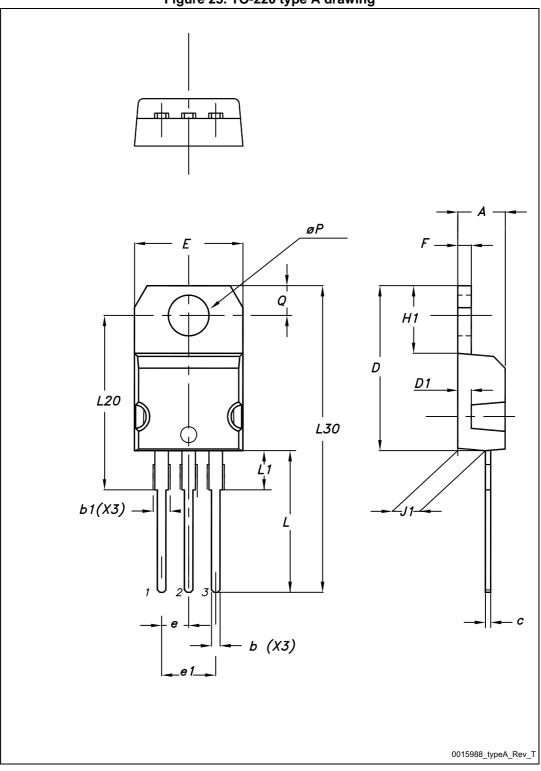


Figure 25. TO-220 type A drawing

14/21

		mm			
Dim. —	Min.	Тур.	Max.		
A	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
с	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
Øр	3.75		3.85		
Q	2.65		2.95		

Table 10. TO-220 type A mechanical data

4.3 IPAK, STU2N105K5

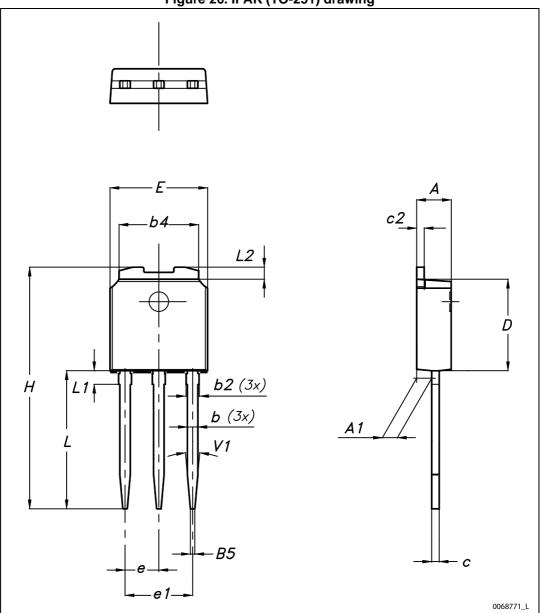


Figure 26. IPAK (TO-251) drawing

DIM		mm.		
	min.	typ.	max.	
A	2.20		2.40	
A1	0.90		1.10	
b	0.64		0.90	
b2			0.95	
b4	5.20		5.40	
B5		0.30		
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
E	6.40		6.60	
е		2.28		
e1	4.40		4.60	
Н		16.10		
L	9.00		9.40	
L1	0.80		1.20	
L2		0.80	1.00	
V1		10°		

Table 11. IPAK (TO-251) type A mechanical data

5 Packaging mechanical data

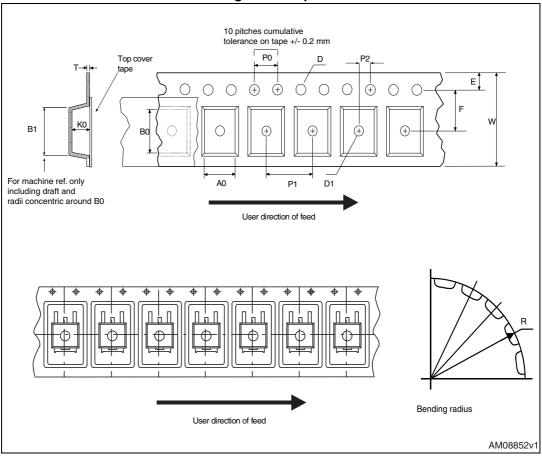
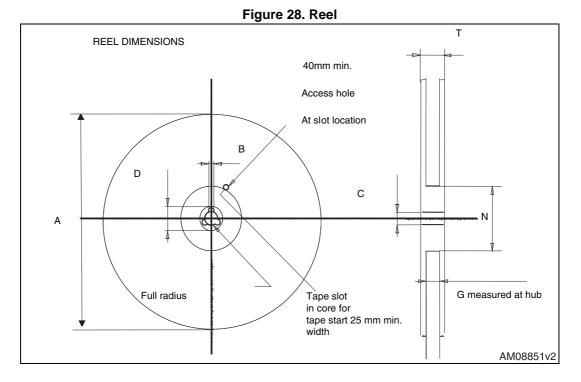



Figure 27. Tape

Таре				Reel		
Dim.	mm			mm		
Dim.	Min.	Max.	Dim.	Min.	Max.	
A0	6.8	7	А		330	
B0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	Ν	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

6 Revision history

Date	Revision	Changes
08-May-2014	1	First release.
14-Nov-2014	2	Document status promoted from preliminary to production data. Updated title, features and description in cover page. Updated <i>Figure 9: Static drain-source on-resistance, Section 4.1:</i> <i>DPAK, STD2N105K5</i> and <i>Section 4.3: IPAK, STU2N105K5</i> . Minor text changes.
19-Nov-2004 3		Updated V _{GS} in <i>Table 2: Absolute maximum ratings</i> and I _{GSS} in <i>Table 4: On /off states</i> .

Table 13. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

