

STG40H120F2D7

1200 V, 40 A trench gate field-stop H series IGBT die in D7 packing

Datasheet - preliminary data

Description

This die is an IGBT developed using an advanced propriety trench gate and field-stop structure. This device is part of the improved H series IGBTs.

Features

- · Medium speed switching series
- Low V_{CE(sat)}= 2 V (typ) at I_C= 40 A
- Positive V_{CE(sat)} temperature coefficient
- Tight parameter distribution
- Low switching-off losses
- · Short tail current
- Short-circuit rated

Applications

- Welding
- UPS
- PFC
- Photovoltaic inverter
- High frequency converter

Table 1. Device summary

Order code	V _{DS}	I _{CN}	Die size	Packing
STG40H120F2D7	1200 V	40 A	6.05 x 6.83 mm ²	D7

Contents STG40H120F2D7

Contents

1	Mec	nanical parameters	3
2	Elec	trical ratings	4
3	Chip	a layout	6
4	Add	itional information	8
	4.1	Additional testing and screening	8
	4.2	Shipping	8
	4.3	Handling	8
	4.4	Wafer/die storage	8
5	Revi	ision history	9

1 Mechanical parameters

Table 2. Mechanical parameters

Parameter		Value	Unit	
Die size with scribe line		6.05 x 6.83	mm²	
Wafer size		200	mm	
Die thickness		110	μm	
Maximum possible dice per wafer		623	dice	
Front side passivation		Silicone nitride		
Emitter pad size including gate pad (x4)		5.02 x 1.25	mm²	
Gate pad size		1.36 x 1.00	mm²	
Front side metallization	composition	AlSiCu		
Front side metallization	thickness	4.5	μm	
Dealt side mentallination	composition	AI/Ti/NiV/Ag		
Back side metallization	thickness	0.65	μm	
Die bond		Electrically conductive gl	ue or soft solder	
Recommended wire bonding		≤ 500	μm	

Electrical ratings STG40H120F2D7

2 Electrical ratings

Table 3. Absolute maximum ratings ($T_J = 25$ °C, unless otherwise specified)

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage	1200	V
V_{GE}	Gate-emitter voltage	±20	V
I _C	Continuous collector current limited by T _{Jmax}	40 ⁽¹⁾	Α
I _{CP} ⁽¹⁾⁽²⁾	Pulsed collector current, T _p limited by T _{Jmax}	120 ⁽¹⁾	Α
T _{SC} ⁽³⁾	Short circuit with stand time VCC= 600 V,V _{GE} = 15 V,V _P ≤ 1200V,T _{Jstart} ≤ 150°C	5	μs
Tj	Operating junction temperature	- 55 to 175	°C

^{1.} Depending on thermal properties of assembly

Table 4. Static characteristics (tested on wafer unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-emitter breakdown voltage	$I_C = 1 \text{ mA}, V_{GE} = 0$	1200			V
V _{CE(sat)}	Collector-emitter saturation voltage (V _{GS} = 0)	V _{GE} = 15 V, I _C = 15 A			2.3	V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	V
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	$V_{GE} = \pm 20V, V_{CE} = 0$			250	nA
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 1200 V			25	μΑ

^{2.} Pulse width limited by maximum junction temperature

^{3.} Not tested at chip level, verified by design/characterization

STG40H120F2D7 Electrical ratings

Table 5. Electrical characteristics ⁽¹⁾ (not tested at chip level, verified by design/characterization)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Collector-emitter	V _{GE} = 15V, I _C = 40A	-	2	2.6	V
V _{CE(sat)}	saturation voltage	$V_{GE} = 15V, I_{C} = 40A$ $T_{J} = 175^{\circ}C$	-	2.59		V
C _{ies}	Input capacitance	V _{CE} = 25 V, f = 1Mhz V _{GE} = 0	-	3190		pF
C _{oes}	Output capacitance		-	223		pF
C _{res}	Reverse transfer capacitive		-	77.4		pF
Q_g	Total gate charge	V _{CC} = 960 V, I _C = 40A, V _{GF} = 15V	-	17.2		nC
Q _{ge}	Gate emitter charge		-	84.8		nC
Q_{gc}	Gate collector charge	- GE	-	158		nC

^{1.} Value are referred to packaged device STGW40H120F2 with specific test circuit.

Table 6. Switching characteristics⁽¹⁾ on inductive load (not tested at chip level, verified by design/characterization)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	37	-	ns
t _r	Current rise time	$V_{cc} = 600 \text{ V}, I_{c} = 40\text{A},$	-	18	-	ns
t _{d(off)}	Turn-off delay time	$V_{GE} = 15 \text{ V}, R_{G} = 10 \Omega$	-	152	-	ns
t _f	Fall time	T _J = 25 °C	-	82.7	-	ns
E _{off}	Switching off energy		-	1325	-	μJ
t _{d(on)}	Turn-on delay time		-	36	-	ns
t _f	Current rise time	$V_{cc} = 600 \text{ V}, I_{c} = 40 \text{ A},$	-	20	-	ns
t _{d(off)}	Turn-off delay time	$V_{GE} = 15 \text{ V}, R_{G} = 10 \Omega$	-	161	-	ns
t _f	Fall time	T _J = 175 °C	-	190	-	ns
E _{off}	Switching off energy		-	2465	-	μJ

Values are strongly dependent on package/module design and mounting technology. These value are referred to the characterization for the device STGW40H120F2 with specific test circuit. Refer to STGW40H120F2 datasheet for more information

Chip layout STG40H120F2D7

3 Chip layout

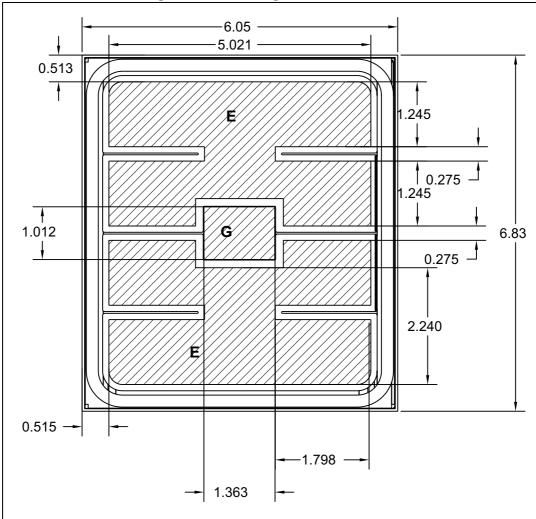
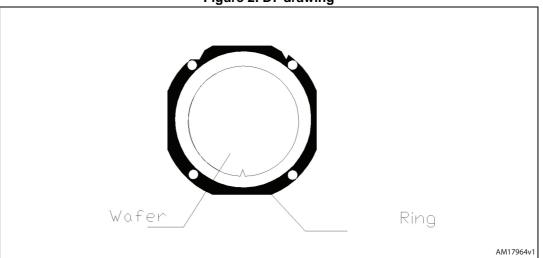


Figure 1. Die drawing and dimensions^(a)

Table 7. Die delivery


Package option	Description	Details
D7	Wafer (8 inches) tested, inked, cut on sticky foil on 10.8" (276 mm) ring (see <i>Figure 2</i>)	Wafer (8 inches) is held by ring protected by two carton shells, inside a plastic envelope sealed under vacuum. Maximum number of wafers for each package is 5, weight is about 3.7 Kg.

57/

a. Dimensions are in mm.

STG40H120F2D7 Chip layout

Figure 2. D7 drawing

Additional information STG40H120F2D7

4 Additional information

4.1 Additional testing and screening

For customers requiring product supplied as known good die (KGD) or requiring specific die level testing, please contact the local ST sales office.

4.2 Shipping

Several shipping options are offered, consult the local ST sales office for availability:

- Die in waffle pack suffix D2 on sales type
- · Die on film sticky foil suffix on sales type D7
- Carrier tape suffix on sales type D8+KGD

4.3 Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singular dice are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

4.4 Wafer/die storage

Once opened, the wafer must be stored in a dry, inert atmosphere, such as nitrogen. Optimum temperature for storage is 18 °C \pm 2 °C with as few variations as possible to avoid parasitic polymerization of the adhesive. Sawn wafers must be processed within 12 weeks after receipt by customer.

After the customer opens the package, the customer is responsible for the products.

STG40H120F2D7 Revision history

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
27-Jan-2015	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

10/10 DocID027357 Rev 1