

TN1215, TYN612, TYN812, TYN1012

Standard 12 A SCRs

Datasheet - production data

Features

- On-state RMS current, I_{T(RMS)} 12 A
- Repetitive peak off-state voltage, V_{DRM}/V_{RRM} 600 V, 800 V and 1000 V
- Triggering gate current, I_{GT} 5 mA to 15 mA

Description

The standard (TN1215 / TYNX12) 12 A SCR series is suitable to fit all modes of control, found in applications such as overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition and voltage regulation circuits.

Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space.

Table 1. Device summary

Order code	Voltage (x00) V _{DRM} /V _{RRM}		, , ,		I _{GT}	Package
code	600	700	800	1000		
TN1215 -xxxB	Х		Х		15 mA	DPAK
TN1215 -xxxG	Х		Х		15 mA	D ² PAK
TN1215 -xxxH	Х		Х		15 mA	IPAK
TYNx12 RG	Х		Х	Х	15 mA	TO-220AB
TYNx12 TRG	Х		Х	Х	5 mA	TO-220AB

This is information on a product in full production.

1 Characteristics

Table 2. Absolute ratings (limiting values)

				Value		
Symbol	Pa	rameter		value	Unit	
Cy						
I _{T(RMS)}	On-state RMS current (180° condu	ction angle)	T _c = 105 °C	12	Α	
I _{T(AV)}	Average on-state current (180° cor	nduction angle)	T _c = 105 °C	8	А	
1 .	Non repetitive surge peak	$t_p = 8.3 \text{ ms}$	T - 25 °C	145	_	
I _{TSM}	on-state current	t _p = 10 ms	T _j = 25 °C	140	A	
l ² t	I ² t value for fusing	t _p = 10 ms	T _j = 25 °C	98	A ² S	
dI/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$		T _j = 125 °C	50	A/µ s	
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 125 °C	4	Α	
P _{G(AV)}	Average gate power dissipation $T_j = 125 ^{\circ}\text{C}$			1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C	
V_{RGM}	Maximum peak reverse gate voltag	је		5	V	

Table 3. Standard electrical characteristics (T_j = 25 °C, unless otherwise specified)

	-		` <u>]</u>					
Symbol	Test condition	one		TN1	215	TY	ſN	Unit
Symbol	rest condition	Olis		B/G	G	x12T	x12	Oille
1.			MIN.	2	2	0.5	2	mA
I _{GT}	$V_D = 12 \text{ V}, R_L = 33 \Omega$		MAX.	1	5	5	15	IIIA
V _{GT}			MAX.	1.3				V
V _{GD}	$V_D = V_{DRM}$, $R_L = 3.3 \text{ k}\Omega$	MIN.		(0.2		V	
I _H	I _T = 500 mA, gate open	MAX.	40	30	15	30	mA	
IL	I _G = 1.2 I _{GT}	I _G = 1.2 I _{GT}			60	30	60	mA
dV/dt	V _D = 67% V _{DRM,} gate open	T _j =125 °C	MIN.	200 40 200		200	V/µs	
V _{TM}	$I_{TM} = 24 \text{ A}$ $t_p = 380 \mu\text{s}$	T _j = 25 °C	MAX.	1.6				V
V _{t0}	Threshold voltage	T _j = 125 °C	MAX.	0.85				V
R _d	Dynamic resistance $T_j = 125 ^{\circ}\text{C}$		MAX.	30			mΩ	
I _{DRM} , ,		T _j = 25 °C	MAX.			5		μA
I _{RRM}	$V_{DRM} = V_{RRM}$ $T_j = 125 °C$		IVIAA.	2				mA

47/

Table 4. Thermal resistance

Symbol		Value	Unit		
R _{th(j-c)}	Junction to case (DC)		DPAK, IPAK, TO-220AB	1.3	°C/W
	hungtion to embient (DC)	$S^{(1)} = 0.5 \text{ cm}^2$	DPAK	70	
B		$S^{(1)} = 1.0 \text{ cm}^2$	D²PAK	45	°C/W
R _{th(j-a)}	Junction to ambient (DC)		IPAK	100	- C/VV
			TO-220AB	60	

1. S = Copper surface under tab

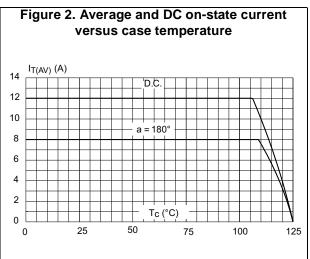


Figure 3. Average and DC on-state current versus ambient temperature (DPAK) $I_{\mathsf{T}(\mathsf{AV})}\left(\mathsf{A}\right)$ 3.0 Device mounted on FR4 with recommended pad layout D.C. 2.0 D²PAK 1.5 1.0 0.5 Ta(°C) 0.0 52 125 05 57 100

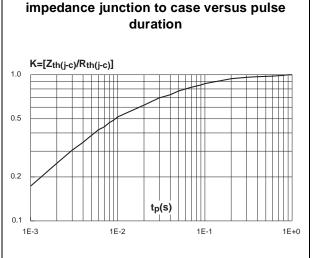
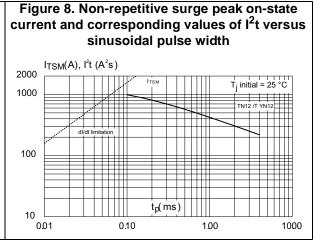
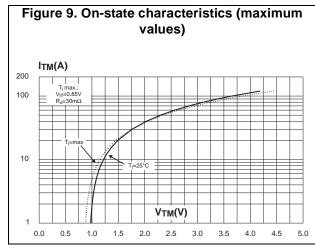
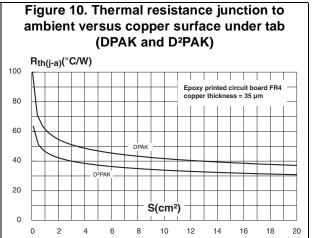





Figure 4. [Relative variation of thermal

Figure 5. Relative variation of thermal Figure 6. Relative variation of gate trigger and holding current versus junction temperature impedance junction to ambient versus pulse duration $K=[Z_{th(j-a)}/R_{th(j-a)}]$ $I_{GT},I_{H},I_{L}[T_{j}] / I_{GT},I_{H},I_{L}[T_{j}=25^{\circ}C]$ 1.00 2.4 2.2 2.0 1.8 1.6 1.4 0.10 1.2 1.0 0.8 0.6 0.4 0.2 T_j(°C) t_p(s) 0.01 -40 1E-1 1E+0 1E+1 5E+2 1E-2 1E+2

DocID7475 Rev 10

4/15

Package information 2

- Epoxy meets UL94, V0
- Lead-free packages
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 **DPAK** package information

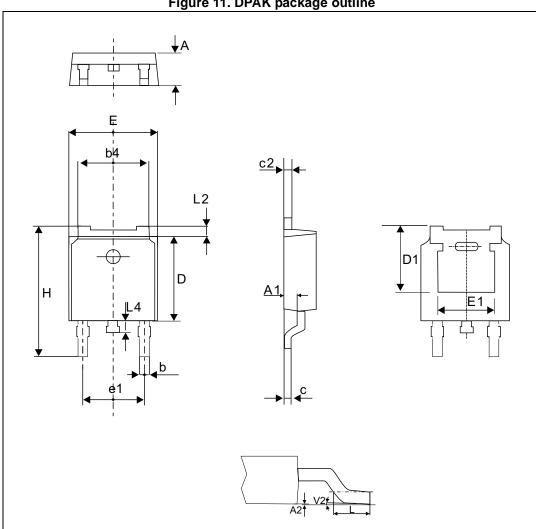
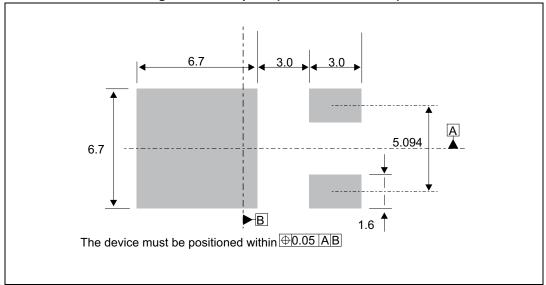


Figure 11. DPAK package outline

Note:

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.



DocID7475 Rev 10

Table 5. DPAK package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.18		2.40	0.086		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
b	0.64		0.90	0.025		0.035
b4	4.95		5.46	0.195		0.215
С	0.46		0.61	0.018		0.024
c2	0.46		0.60	0.018		0.023
D	5.97		6.22	0.235		0.244
D1	5.10			0.201		
Е	6.35		6.73	0.250		0.264
E1		4.32			0.170	
e1	4.40		4.70	0.173		0.185
Н	9.35		10.40	0.368		0.409
L	1.00		1.78	0.039		0.070
L2			1.27			0.05
L4	0.60		1.02	0.023		0.040
V2	0°		8°	0°		8°

Figure 12. Footprint (dimensions in mm)

577

2.2 IPAK package information

 $\begin{bmatrix} E \\ b4 \\ L2 \end{bmatrix}$ $\begin{bmatrix} C \\ D \\ D \end{bmatrix}$ $\begin{bmatrix} D \\ A \\ C2 \\ V_{1} \\ A1 \end{bmatrix}$ $\begin{bmatrix} D \\ A1 \\ A1 \end{bmatrix}$

Figure 13. IPAK package outline

Note:

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

Table 6. IPAK package mechanical data

	Dimensions					
Ref.		Millimeters				
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.20		2.40	0.086		0.094
A1	0.90		1.10	0.035		0.043
b	0.64		0.90	0.025		0.035
b2			0.95			0.037
b4	5.20		5.43	0.204		0.213
С	0.45		0.60	0.017		0.023
c2	0.46		0.60	0.018		0.023
D	6		6.20	0.236		0.244
E	6.40		6.70	0.252		0.263
е		2.28			0.090	
e1	4.40		4.60	0.173		0.181
Н		16.10			0.634	
L	9		9.60	0.354		0.377
L1	0.8		1.20	0.031		0.047
L2		0.80	1.25		0.031	0.049
V1		10°			10°	

57/

2.3 TO-220AB package information

Ε $\emptyset P$ Resin gate 0.5 mm max. protrusion(1) **H1** D1 D **L20 L30** J1 L1 b1 b е Resin gate 0.5 mm max. protrusion⁽¹⁾ **e**1 (1) Resin gate position accepted in each of the two position shown as well as the symmetrical opposites

Figure 14. TO-220AB package outline

Table 7. TO-220AB package mechanical data

	Dimensions						
Ref.	Millim	neters	Inches				
	Min.	Max.	Min.	Max.			
А	4.40	4.60	0.17	0.18			
b	0.61	0.88	0.024	0.035			
b1	1.14	1.70	0.045	0.067			
С	0.48	0.70	0.019	0.027			
D	15.25	15.75	0.60	0.62			
D1	1.27	1.27 typ.		typ.			
E	10	10.40	0.39	0.41			
е	2.40	2.70	0.094	0.106			
e1	4.95	5.15	0.19	0.20			
F	1.23	1.32	0.048	0.052			
H1	6.20	6.60	0.24	0.26			
J1	2.40	2.72	0.094	0.107			
L	13	14	0.51	0.55			
L1	3.50	3.93	0.137	0.154			
L20	16.40 typ.		0.64 typ.				
L30	28.90 typ.		1.13 typ.				
ØP	3.75	3.85	0.147	0.151			
Q	2.65	2.95	0.104	0.116			

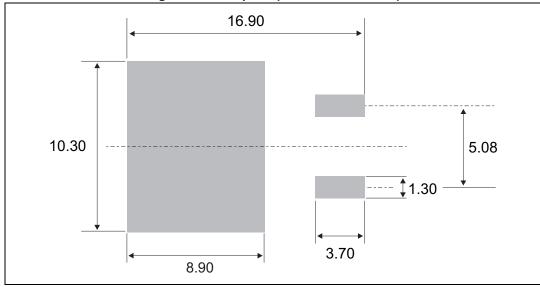

2.4 D²PAK package information

Figure 15. D²PAK package outline

Table 8. D²PAK package mechanical data

Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.30		4.60	0.169		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.70		0.93	0.027		0.037
B2	1.25	1.40		0.048	0.055	
С	0.45		0.60	0.017		0.024
C2	1.21		1.36	0.047		0.054
D	8.95		9.35	0.352		0.368
E	10.00		10.28	0.393		0.405
G	4.88		5.28	0.192		0.208
L	15.00		15.85	0.590		0.624
L2	1.27		1.40	0.050		0.055
L3	1.40		1.75	0.055		0.069
R		0.40			0.016	
V2	0°		8°	0°		8°

Figure 16. Footprint (dimensions in mm)

3 Ordering information

Figure 17. TN1215 series

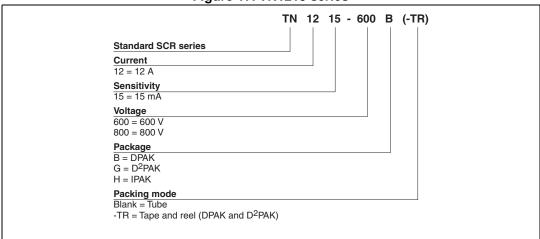


Figure 18. TYNx12 series

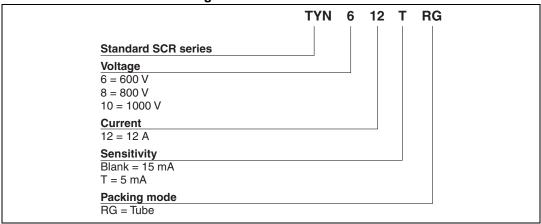


Table 9. Ordering information

Order code ⁽¹⁾	Marking ⁽¹⁾	Package	Weight	Base qty	Delivery mode
TN1215-x00B	TN12 15x00	DPAK	0.3 g	75	Tube
TN1215-x00B-TR	TN12 15x00	DPAK	0.3 g	2500	Tape and reel
TN1215-x00G	TN1215x00G	D ² PAK	1.5 g	50	Tube
TN1215-x00G-TR	TN1215x00G	D ² PAK	1.5 g	1000	Tape and reel
TN1215-x00H	TN12 15x00	IPAK	0.3 g	75	Tube
TYNx12RG	TYNx12	TO-220AB	2.3 g	50	Tube
TYNx12TRG	TYNx12T	TO-220AB	2.3 g	50	Tube

^{1.} x (6, 7, 8, 10) depends upon voltage

4 Revision history

Table 10. Document revision history

Date	Revision	Changes
Sep-2000	3	Last update.
25-Mar-2005	4	TO-220AB delivery mode changed from bulk to tube.
14-Oct-2005	5	Changed sensitivity values in <i>Table 1</i> for TYNx12 (30 to 15 mA) and TYNx12T (15 to 5 mA). Added ECOPACK statement.
08-Mar-2007	6	Reformatted to current standard. Figure 17: TN1215 series product name corrected. Figure 23: TS1220 series product name corrected.
23-Oct-2009	7	Added TS1220-xxxT device.
03-Jun-2014	8	Updated DPAK and IPAK package information and reformatted to current standard.
25-Fev-2015	9	The part number TS1220 series has been moved to a separate document.Removed TO-220AB insulated package information.
29-Jul-2015	10	Updated Figure 11.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID7475 Rev 10

15/15