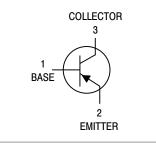
# **General Purpose Transistor**

# **PNP Silicon**


### Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



## **ON Semiconductor®**

www.onsemi.com

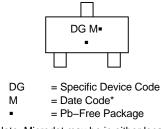


### MAXIMUM RATINGS

| Rating                         | Symbol           | Value | Unit |
|--------------------------------|------------------|-------|------|
| Collector-Emitter Voltage      | V <sub>CEO</sub> | -45   | Vdc  |
| Collector-Base Voltage         | V <sub>CBO</sub> | -60   | Vdc  |
| Emitter-Base Voltage           | V <sub>EBO</sub> | -5.0  | Vdc  |
| Collector Current – Continuous | Ι <sub>C</sub>   | -800  | mAdc |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

### THERMAL CHARACTERISTICS


| Characteristic                                                                | Symbol                            | Max         | Unit  |
|-------------------------------------------------------------------------------|-----------------------------------|-------------|-------|
| Total Device Dissipation FR-5 Board<br>(Note 1) $T_A = 25^{\circ}C$           | PD                                | 225         | mW    |
| Derate above 25°C                                                             |                                   | 1.8         | mW/°C |
| Thermal Resistance,<br>Junction–to–Ambient                                    | $R_{\theta JA}$                   | 556         | °C/W  |
| Total Device Dissipation<br>Alumina Substrate (Note 2)<br>$T_A = 25^{\circ}C$ | P <sub>D</sub>                    | 300         | mW    |
| Derate above 25°C                                                             |                                   | 2.4         | m₩/°C |
| Thermal Resistance,<br>Junction–to–Ambient                                    | $R_{\theta J A}$                  | 417         | °C/W  |
| Junction and Storage Temperature                                              | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C    |

1. FR–5 =  $1.0 \times 0.75 \times 0.062$  in.

2. Alumina = 0.4  $\times$  0.3  $\times$  0.024 in 99.5% alumina.



#### MARKING DIAGRAM



(Note: Microdot may be in either location)

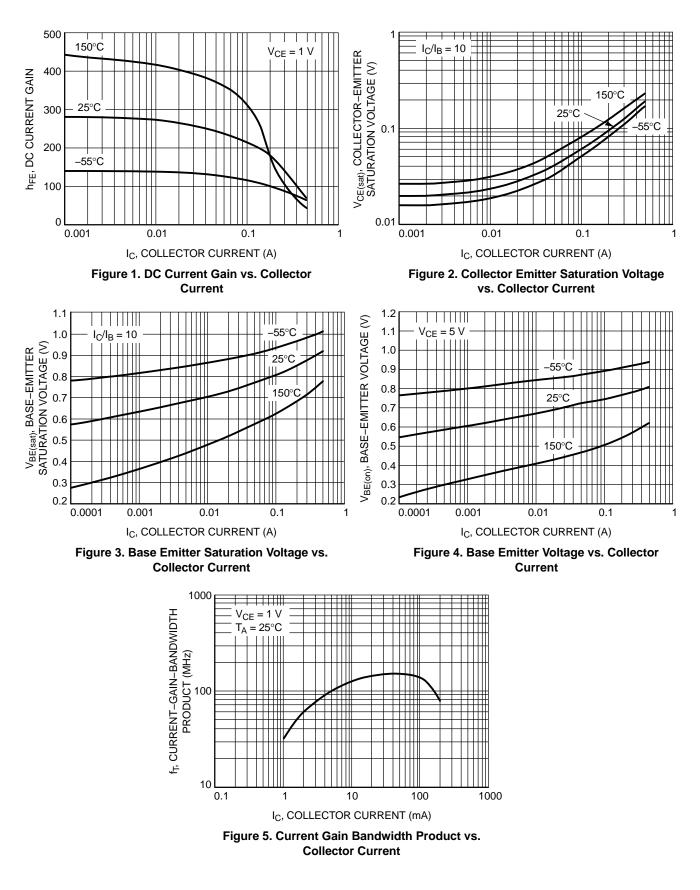
\*Date Code orientation and/or overbar may vary depending upon manufacturing location.

### **ORDERING INFORMATION**

| Device                       | Package             | Shipping <sup>†</sup>  |
|------------------------------|---------------------|------------------------|
| BCW68GLT1G,<br>NSVBCW68GLT1G | SOT–23<br>(Pb–Free) | 3000 / Tape &<br>Reel  |
| BCW68GLT3G                   | SOT-23<br>(Pb-Free) | 10000 / Tape &<br>Reel |

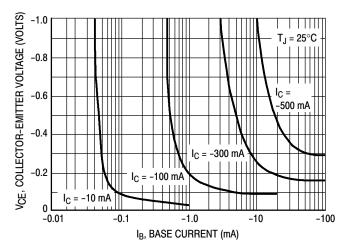
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## BCW68GL


### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                                                               | Symbol               | Min              | Тур         | Max           | Unit         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-------------|---------------|--------------|
| OFF CHARACTERISTICS                                                                                                                                                                          |                      |                  |             |               | •            |
| Collector–Emitter Breakdown Voltage $(I_C = -10 \text{ mAdc}, I_B = 0)$                                                                                                                      | V <sub>(BR)CEO</sub> | -45              | _           | -             | Vdc          |
| Collector–Emitter Breakdown Voltage $(I_C = -10 \ \mu Adc, \ V_{EB} = 0)$                                                                                                                    | V <sub>(BR)CES</sub> | -60              | -           | -             | Vdc          |
| Emitter–Base Breakdown Voltage $(I_E = -10 \ \mu Adc, I_C = 0)$                                                                                                                              | V <sub>(BR)EBO</sub> | -5.0             | -           | -             | Vdc          |
| Collector Cutoff Current<br>$(V_{CE}=-45 \text{ Vdc}, I_E = 0)$<br>$(V_{CE}=-45 \text{ Vdc}, I_B = 0, T_A = 150^{\circ}\text{C})$                                                            | ICES                 |                  |             | -20<br>-10    | nAdc<br>μAdc |
| Emitter Cutoff Current ( $V_{EB} = -4.0 \text{ Vdc}, I_C = 0$ )                                                                                                                              | I <sub>EBO</sub>     | -                | -           | -20           | nAdc         |
| ON CHARACTERISTICS                                                                                                                                                                           |                      |                  |             |               |              |
| DC Current Gain<br>$(I_C = -10 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$<br>$(I_C = -100 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$<br>$(I_C = -300 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$ | h <sub>FE</sub>      | 120<br>160<br>60 | -<br>-<br>- | 400<br>_<br>_ | _            |
| Collector–Emitter Saturation Voltage $(I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc})$                                                                                                     | V <sub>CE(sat)</sub> | -                | -           | -0.7          | Vdc          |
| Base–Emitter Saturation Voltage $(I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc})$                                                                                                          | V <sub>BE(sat)</sub> | -                | -           | -2.0          | Vdc          |
| SMALL-SIGNAL CHARACTERISTICS                                                                                                                                                                 |                      |                  |             |               |              |
| Current–Gain – Bandwidth Product<br>( $I_C = -20$ mAdc, $V_{CE} = -10$ Vdc, f = 100 MHz)                                                                                                     | f <sub>T</sub>       | 100              | -           | -             | MHz          |
| Output Capacitance $(V_{CB}=-10 \text{ Vdc}, I_E=0, f=1.0 \text{ MHz})$                                                                                                                      | C <sub>obo</sub>     | _                | _           | 18            | pF           |
| Input Capacitance<br>( $V_{EB}$ = -0.5 Vdc, I <sub>C</sub> = 0, f = 1.0 MHz)                                                                                                                 | C <sub>ibo</sub>     | -                | -           | 105           | pF           |
| Noise Figure (I <sub>C</sub> = –0.2 mAdc, V <sub>CE</sub> = –5.0 Vdc, R <sub>S</sub> = 1.0 kΩ, f = 1.0 kHz, BW = 200 Hz)                                                                     | N <sub>F</sub>       | -                | -           | 10            | dB           |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


### BCW68GL

### TYPICAL CHARACTERISTICS



### BCW68GL







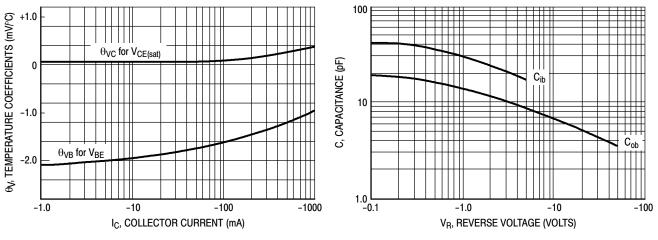
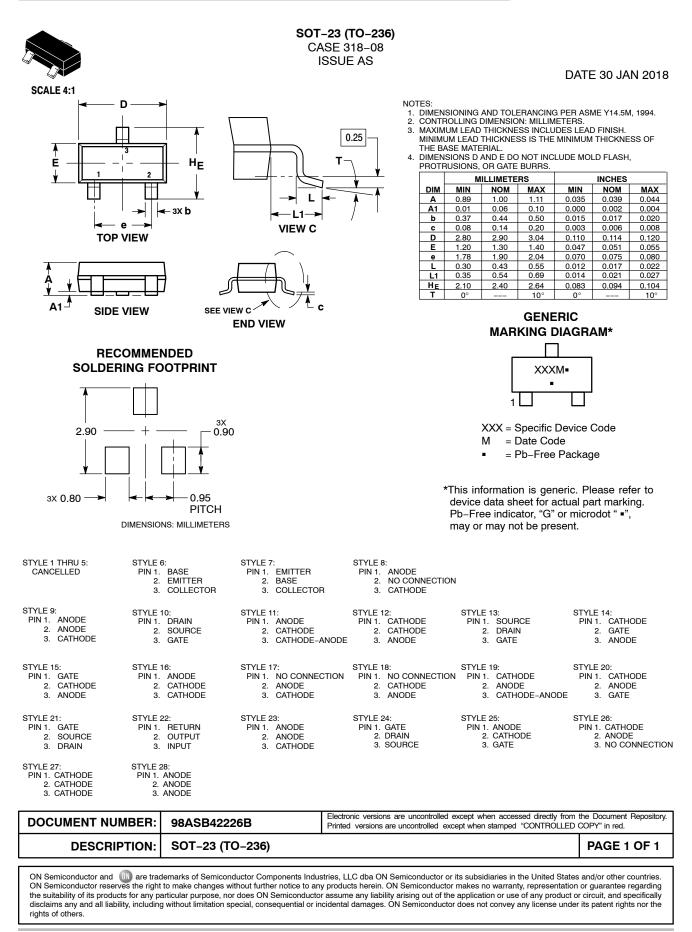




Figure 7. Temperature Coefficients

Figure 8. Capacitances





onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. onsemi does not cust performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application or autorized for use as a critical component in life support systems or any CDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any divide for indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and is officers, employees, subsidiaries, and expenses, and expenses, and exponses hard snegges that onsemi was negligent regarding the design or unauthorized use ever if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright have and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### Email Requests to: orderlit@onsemi.com

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥