

Datasheet

Trench gate field-stop, 650 V, 30 A, high-speed HB2 series IGBT in a TO-247 long leads package

TO-247 long leads

Features

- Maximum junction temperature : T_J = 175 °C
- Low $V_{CE(sat)} = 1.65 V(typ.) @ I_C = 30 A$
- · Co-packaged protection diode
- · Minimized tail current
- · Tight parameter distribution
- · Low thermal resistance
- Positive V_{CE(sat)} temperature coefficient

Applications

- Welding
- Power factor correction

Description

NG1E3C2T

The newest IGBT 650 V HB2 series represents an evolution of the advanced proprietary trench gate field-stop structure. The performance of the HB2 series is optimized in terms of conduction, thanks to a better $V_{\text{CE(sat)}}$ behavior at low current values, as well as in terms of reduced switching energy. A diode used for protection purposes only is co-packaged in antiparallel with the IGBT. The result is a product specifically designed to maximize efficiency for a wide range of fast applications.

Product status link

STGWA30HP65FB2

Product summary			
Order code	STGWA30HP65FB2		
Marking	G30HP65FB2		
Package	TO-247 long leads		
Packing	Tube		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0 V)	650	V
I.	Continuous collector current at T _C = 25 °C	50	А
I _C	Continuous collector current at T _C = 100 °C	30	А
I _{CP} ⁽¹⁾⁽²⁾	Pulsed collector current	90	А
V	Gate-emitter voltage	±20	V
V_{GE}	Transient gate-emitter voltage (t _p ≤ 10 μs)	±30	V
l _F	Continuous forward current at T _C = 25 °C	5	A
'F	Continuous forward current at T _C = 100 °C	5	
I _{FP} ⁽¹⁾⁽²⁾	Pulsed forward current	10	А
P _{TOT}	Total power dissipation at T _C = 25 °C	167	W
T _{STG}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 to 175	°C

^{1.} Pulse width is limited by maximum junction temperature.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
Pulso	Thermal resistance junction-case IGBT	0.9	
R _{thJC}	Thermal resistance junction-case diode	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	

DS13149 - Rev 1 page 2/15

^{2.} Defined by design, not subject to production test.

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 3. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V _{GE} = 0 V, I _C = 1 mA	650			V
		V _{GE} = 15 V, I _C = 30 A		1.65	2.1	V
$V_{\text{CE(sat)}}$	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 125 °C		1.85		
		V _{GE} = 15 V, I _C = 30 A, T _J = 175 °C		2.0		
	Forward on-voltage	I _F = 5 A		2	2.8	V
V_{F}		I _F = 5 A, T _J = 125 °C		1.85		
		I _F = 5 A, T _J = 175 °C		1.75		
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 1 mA	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V			±250	nA

Table 4. Dynamic characteristics

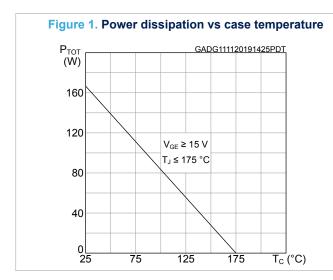
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	1570	-	
C _{oes}	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	98	-	pF
C _{res}	Reverse transfer capacitance			40	-	
Qg	Total gate charge	V 500 V 1 00 A V 04-45 V	-	90	-	
Q _{ge}	Gate-emitter charge	V_{CC} = 520 V, I_C = 30 A, V_{GE} = 0 to 15 V (see Figure 27. Gate charge test circuit)	-	15.3	-	nC
Q _{gc}	Gate-collector charge	(See Figure 21. Gate Charge test circuit)		41.5	-	

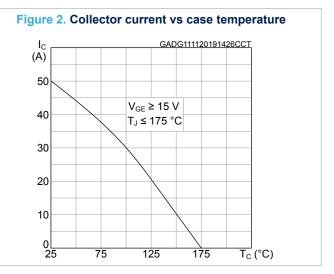
Table 5. Switching characteristics (inductive load)

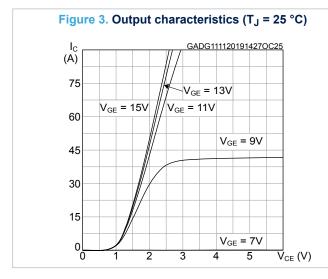
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off delay time	V _{CC} = 400 V, I _C = 30 A,	-	71	-	ns
t _f	Current fall time	V_{GE} = 15 V, R_{G} = 6.8 Ω	-	41	-	ns
E _{off} (1)	Turn-off switching energy	(see Figure 26. Test circuit for inductive load switching)	-	310	-	μJ
t _{d(off)}	Turn-off delay time	V _{CC} = 400 V, I _C = 30 A,	-	79	-	ns
t _f	Current fall time	V_{GE} = 15 V, R_{G} = 6.8 Ω , T_{J} = 175 °C	-	105	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy	(see Figure 26. Test circuit for inductive load switching)	-	643	-	μJ

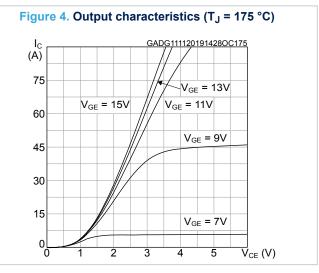
^{1.} Including the tail of the collector current.

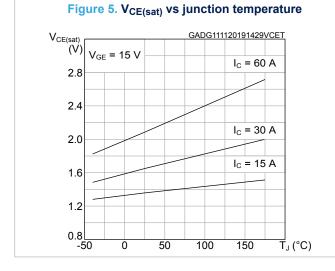
DS13149 - Rev 1 page 3/15

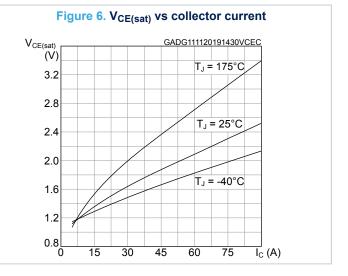

Table 6. Diode switching characteristics (inductive load)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	140	-	ns
Q _{rr}	Reverse recovery charge	I _F = 5 A, V _R = 400 V,	-	21	-	nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V, di/dt = 1000 A/μs	-	6.6	-	Α
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	(see Figure 29. Diode reverse recovery waveform)	-	430	-	A/µs
Err	Reverse recovery energy		-	1.6	-	μJ
t _{rr}	Reverse recovery time		-	200	-	ns
Qrr	Reverse recovery charge	$I_F = 5 \text{ A}, V_R = 400 \text{ V},$	-	47.3	-	nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V, di/dt = 1000 A/μs, T _J = 175 °C (see Figure 29. Diode reverse recovery waveform)	-	9.6	-	Α
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t _b		-	428	-	A/µs
E _{rr}	Reverse recovery energy	wavelolill		3.2	-	μJ


DS13149 - Rev 1 page 4/15




2.1 Electrical characteristics (curves)



DS13149 - Rev 1 page 5/15

10

Figure 7. Forward bias safe operating area I_{c} GADG111120191432SOA I_{c} I_{c}

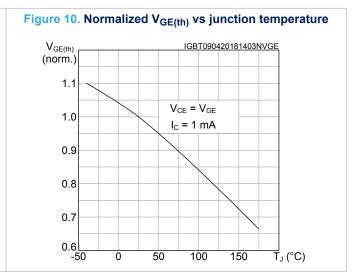
100

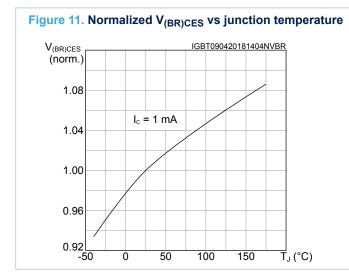
t_p =100μs

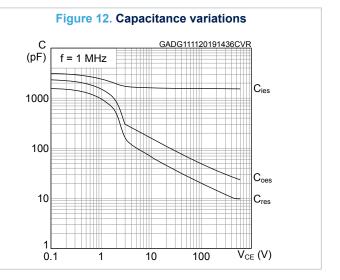
t₀ =1ms

V_{CE} (V)

Figure 9. Diode V_F vs forward current V_F (V) $T_J = -40 \, ^{\circ}\text{C}$ 1.6 $T_J = 175 \, ^{\circ}\text{C}$ 0.8


0.0


0 2 4 6 8 I_F (A)


Single pulse, T_C =25°C

V_{GE} =15V, T_J ≤ 175 °C

10

DS13149 - Rev 1 page 6/15

Figure 13. Gate charge vs gate-emitter voltage

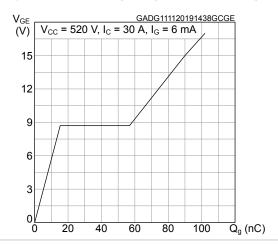


Figure 14. Switching energy vs collector current

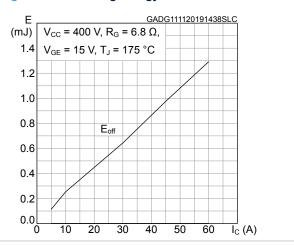


Figure 15. Switching energy vs temperature

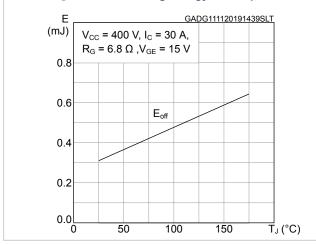


Figure 16. Switching energy vs collector emitter voltage

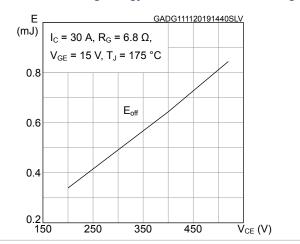


Figure 17. Switching energy vs gate resistance

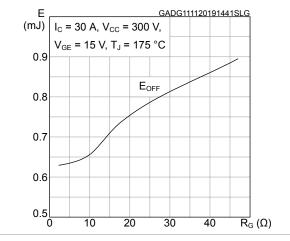
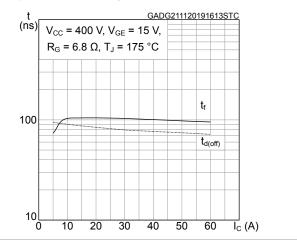



Figure 18. Switching times vs collector current

DS13149 - Rev 1 page 7/15

Figure 19. Switching times vs gate resistance

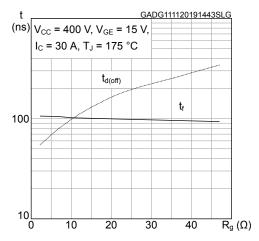


Figure 20. Reverse recovery current vs diode current slope

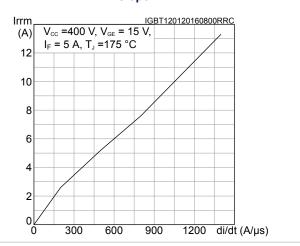


Figure 21. Reverse recovery time vs diode current slope

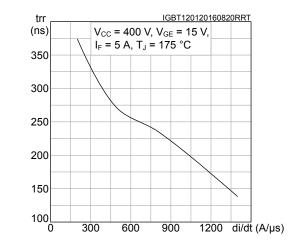
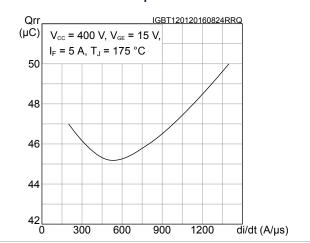
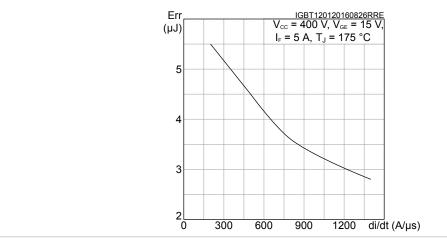
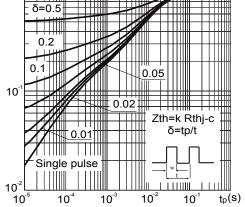
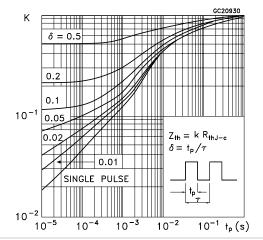
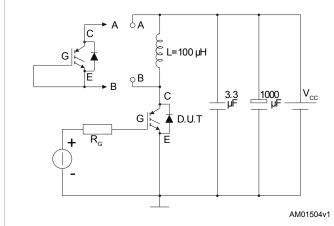


Figure 22. Reverse recovery charge vs diode current slope


Figure 23. Reverse recovery energy vs diode current slope


DS13149 - Rev 1 page 8/15



DS13149 - Rev 1 page 9/15

3 Test circuits

Figure 26. Test circuit for inductive load switching

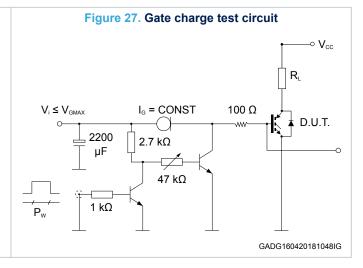
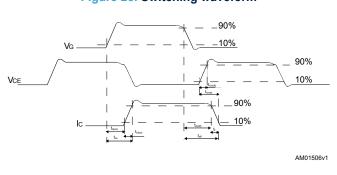
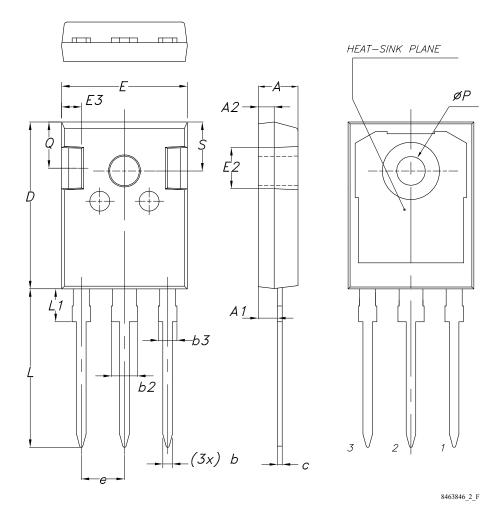



Figure 28. Switching waveform

DS13149 - Rev 1 page 10/15



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 long leads package information

Figure 30. TO-247 long leads package outline

DS13149 - Rev 1

Downloaded from Arrow.com.

Table 7. TO-247 long leads package mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
А	4.90	5.00	5.10		
A1	2.31	2.41	2.51		
A2	1.90	2.00	2.10		
b	1.16		1.26		
b2			3.25		
b3			2.25		
С	0.59		0.66		
D	20.90	21.00	21.10		
E	15.70	15.80	15.90		
E2	4.90	5.00	5.10		
E3	2.40	2.50	2.60		
е	5.34	5.44	5.54		
L	19.80	19.92	20.10		
L1			4.30		
Р	3.50	3.60	3.70		
Q	5.60		6.00		
S	6.05	6.15	6.25		

DS13149 - Rev 1 page 12/15

Revision history

Table 8. Document revision history

Date	Version	Changes
05-Nov-2019	1	First release.

DS13149 - Rev 1 page 13/15

Contents

1	Electrical ratings						
2	2 Electrical characteristics						
	2.1	Electrical characteristics (curves)	5				
3	Test	circuits	10				
4	Pac	kage information	11				
	4.1	TO-247 long leads package information	11				
Re۱	/ision	history	13				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS13149 - Rev 1 page 15/15