Ignition IGBT 20 A, 450 V, N-Channel D²PAK

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Overvoltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

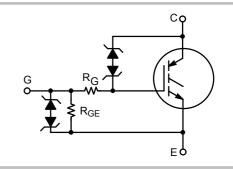
Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- D²PAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Low Threshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- This is a Pb-Free Device

Applications

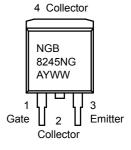
• Ignition Systems

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	500	V
Collector-Gate Voltage	V _{CER}	500	V
Gate-Emitter Voltage	V _{GE}	±15	V
Collector Current-Continuous @ T _C = 25°C - Pulsed	IC	20 50	A _{DC} A _{AC}
Continuous Gate Current	I _G	1.0	mA
	I _G	20	mA
ESD (Charged-Device Model)	ESD	2.0	kV
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω , C = 200 pF	ESD	500	V
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	150 1.0	W/°C
Operating & Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Littelfuse.com


20 A, 450 V $V_{CE(on)} \le 1.24 \text{ V}$ @ $I_C = 15 \text{ A}, V_{GE} \ge 4.0 \text{ V}$

MARKING DIAGRAM

1

D²PAK CASE 418B STYLE 4

NGB8245N = Device Code

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NGB8245NT4G	D ² PAK (Pb-Free)	800 / Tape & Reel

UNCLAMPED COLLECTOR-TO-EMITTER AVALANCHE CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Single Pulse Collector–to–Emitter Avalanche Energy V_{CC} = 50 V, V_{GE} = 5.0 V, Pk I _L = 9.5 A, R_{G} = 1 k Ω , L = 3.5 mH, Starting T_{C} = 150°C	E _{AS}	158	mJ
THERMAL CHARACTERISTICS		•	
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.0	°C/W
Thermal Resistance Junction-to-Ambient (Note 1)	Rou	62.5	°C/W

Maximum Temperature for Soldering Purposes, 1/8" from case for 5 seconds (Note 2)

1. When surface mounted to an FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)			1	I			
Collector-Emitter Clamp Voltage	BV _{CES}	I _C = 2.0 mA	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	430	450	470	٧
		I _C = 10 mA	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	450	475	500	1
		I_C = 12 A, L = 3.5 mH, R_G = 1 kΩ (Note 4)	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	420	450	480	
Collector-Emitter Leakage Current	I _{CES}	V _{CE} = 15 V, V _{GE} = 0 V	T _J = 25°C		0.002	1.0	μΑ
		V_{CE} = 250 V, R_G = 1 k Ω	$T_{\rm J} = -40^{\circ}{\rm C} \text{ to } 175^{\circ}{\rm C}$	0.5	2.0	100	1
Reverse Collector-Emitter Clamp	B _{VCES(R)}		T _J = 25°C	30	33	39	V
Voltage		$I_C = -75 \text{ mA}$	T _J = 175°C	31	35	40	
			T _J = -40°C	30	31	37	
Reverse Collector-Emitter Leakage	I _{CES(R)}		T _J = 25°C	-	0.4	1.0	mA
Current		V _{CE} = −24 V	T _J = 175°C	-	20	35	1
			T _J = -40°C	-	0.04	0.2	
Gate-Emitter Clamp Voltage	BV _{GES}	$I_G = \pm 5.0 \text{ mA}$	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	12	12.5	14	V
Gate-Emitter Leakage Current	I _{GES}	V_{GE} = $\pm 5.0 \text{ V}$	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	200	316	350	μΑ
Gate Resistor	R_{G}		$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$		70		Ω
Gate-Emitter Resistor	R _{GE}		$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	14.25	16	25	kΩ
ON CHARACTERISTICS (Note 3)				•	•		*
Gate Threshold Voltage	$V_{GE(th)}$		T _J = 25°C	1.5	1.8	2.1	V
		I_C = 1.0 mA, V_{GE} = V_{CE}	T _J = 175°C	0.7	1.0	1.3	1
			T _J = -40°C	1.7	2.0	2.3	
Threshold Temperature Coefficient (Negative)				4.0	4.6	5.2	mV/°C
Collector-to-Emitter On-Voltage	V _{CE(on)}	I _C = 10 A, V _{GE} = 3.7 V	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	0.8	1.11	1.97	V
		I _C = 10 A, V _{GE} = 4.0 V	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	0.8	1.10	1.85	
		I _C = 15 A, V _{GE} = 4.0 V	$T_{J} = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	0.8	1.24	2.00	1
Forward Transconductance	gfs	I _C = 6.0 A, V _{CE} = 5.0 V	T _J = 25°C	10	19	25	Mhos
DYNAMIC CHARACTERISTICS (Note	e 3)		•	•			_•
,							$\overline{}$
Input Capacitance	C _{ISS}			1100	1400	1600	pF
Input Capacitance Output Capacitance	C _{ISS}	f = 10 kHz, V _{CE} = 25 V	T _J = 25°C	1100 50	1400 65	1600 80	pF

275

°C

 T_L

When surface mounted to an FR4 board using the minimum recommended pad size.
 For further details, see Soldering and Mounting Techniques Reference Manual: SOLDERRM/D.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note 3)						
Turn-On Delay Time (Resistive) 10% V _{GE} to 10% I _C	t _{d(on)R}	V _{CC} = 14 V, R _I = 1.0 Ω,	$T_J = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	0.1	1.0	2.0	μs
Rise Time (Resistive) 10% I _C to 90% I _C	t _{rR}	$R_G = 1.0 \text{ k}\Omega, V_{GE} = 5.0 \text{ V}$	$T_J = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	1.0	3.4	6.0	
Turn-Off Delay Time (Resistive) 90% V _{GE} to 90% I _C	t _{d(off)R}	V _{CC} = 14 V, R _I = 1.0 Ω,	$T_J = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	2.0	4.5	8.0	μS
Fall Time (Resistive) 90% I _C to 10% I _C	t _{fR}	$R_G = 1.0 \text{ k}\Omega, V_{GE} = 5.0 \text{ V}$	$T_J = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	3.0	8.0	12	
Turn-Off Delay Time (Inductive) 90% V _{GE} to 90% I _C	t _{d(off)L}	V _{CE} = BV _{CES} , L = 0.5mH,	$T_J = -40^{\circ}\text{C to } 175^{\circ}\text{C}$	6.5	9.7	12.5	μs
Fall Time (Inductive) 90% I _C to 10% I _C	t _{fL}	$R_G = 1.0 \text{ k}\Omega, I_C = 10 \text{ A}, V_{GE} = 5.0 \text{ V}$	$T_{\rm J} = -40^{\circ}{\rm C} \text{ to } 175^{\circ}{\rm C}$	6.0	8.3	11	

Electrical Characteristics at temperature other than 25°C, Dynamic and Switching characteristics are not subject to production testing.
 Not subject to production testing.

TYPICAL ELECTRICAL CHARACTERISTICS

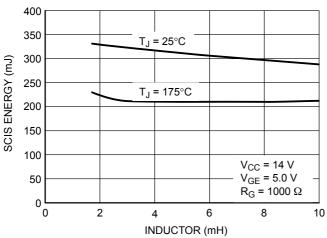


Figure 1. Self Clamped Inductive Switching

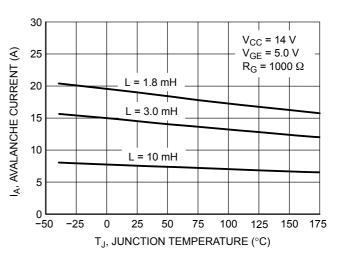


Figure 2. Open Secondary Avalanche Current vs. Temperature

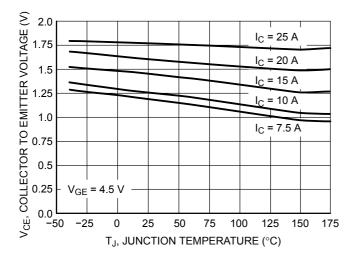


Figure 3. Collector-to-Emitter Voltage vs.
Junction Temperature

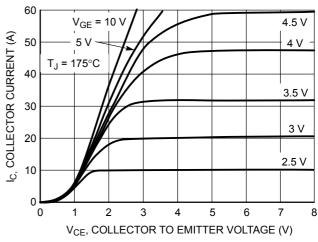


Figure 4. Collector Current vs. Collector-to-Emitter Voltage

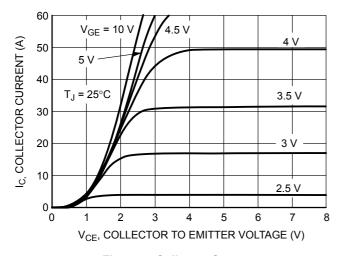


Figure 5. Collector Current vs. Collector-to-Emitter Voltage

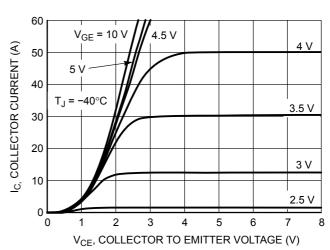


Figure 6. Collector Current vs. Collector-to-Emitter Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

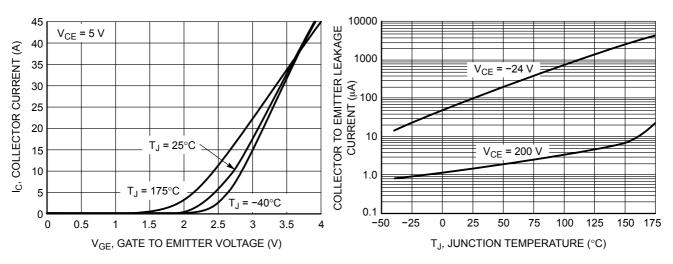


Figure 7. Transfer Characteristics

Figure 8. Collector-to-Emitter Leakage Current vs. Temperature

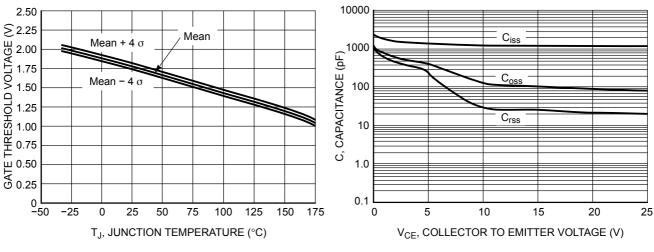


Figure 9. Gate Threshold Voltage vs. Temperature

12 10 SWITCHING TIME (µs) t_{delay} $V_{CC} = 300 \text{ V}$ $V_{GE} = 5.0 V$ $R_G = 1000 \Omega$ $I_C = 9.0 A$ 2 $R_I = 33 \Omega$ 25 100 125 150 175 T_J, JUNCTION TEMPERATURE (°C)

Figure 11. Resistive Switching Fall Time vs. Temperature

Figure 10. Capacitance vs. Collector-to-Emitter Voltage

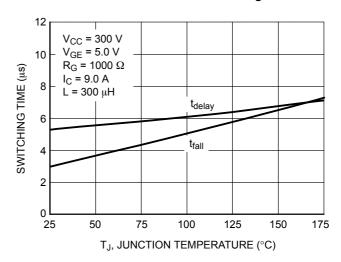


Figure 12. Inductive Switching Fall Time vs.
Temperature

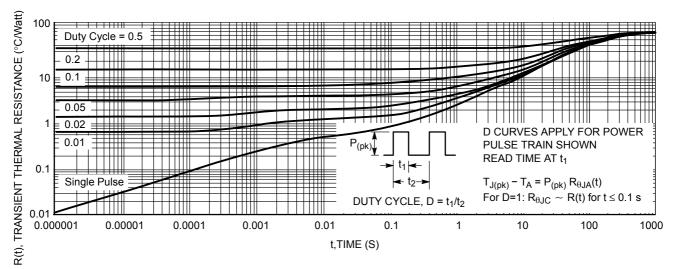


Figure 13. Minimum Pad Transient Thermal Resistance (Non-normalized Junction-to-Ambient)

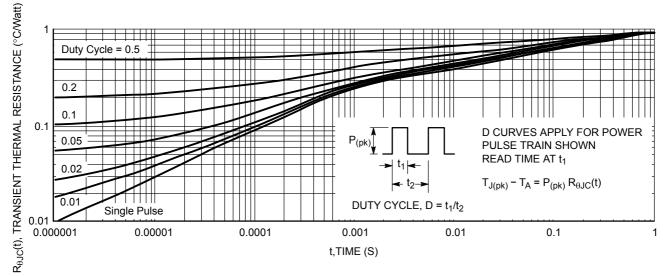
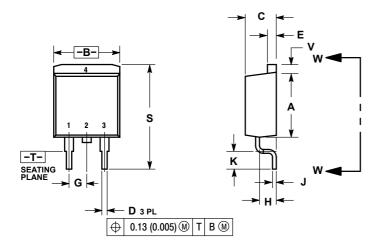



Figure 14. Best Case Transient Thermal Resistance (Non-normalized Junction-to-Case Mounted on Cold Plate)

PACKAGE DIMENSIONS

D²PAK 3 CASE 418B-04 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING
- PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
Е	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100	BSC	2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29 2.79		
L	0.052	0.072	1.32	1.83	
M	0.280	0.320	7.11	8.13	
N	0.197	REF	5.00	REF	
Р	0.079	REF	2.00 REF		
R	0.039	0.039 REF		REF	
S	0.575	0.625	14.60	15.88	
٧	0.045	0.055	1.14	1.40	

mm

SCALE 3:1

- 3. EMITTER 4. COLLECTOR
- STYLE 4: PIN 1. GATE 2. COLLECTOR **SOLDERING FOOTPRINT*** 0.33 1.016 10.66 5.08 0.04 0.42 0.20 VIEW W-W 3.05 0.12

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

17.02 0.67

Littelfuse.com