
STD130N6F7

N-channel 60 V, 4.2 mΩ typ., 80 A STripFET[™] F7 Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	VDS	RDS(on) max.	ID	Ртот
STD130N6F7	60 V	5.0 mΩ	80 A	134 W

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low Crss/Ciss ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET[™] F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STD130N6F7	130N6F7	DPAK	Tape and reel

October 2016

DocID028788 Rev 2

1/13 www.st.com

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	cuits	7
4	Packag	e information	8
	4.1	DPAK package information	9
5	Revisio	n history	

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{GS}	Gate-source voltage	±20	V
lp ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	80	٨
ID.	Drain current (continuous) at T _{case} = 100 °C	80	A
I _{DM} ⁽²⁾	Drain current (pulsed)	320	А
Ртот	Total dissipation at T _{case} = 25 °C	134	W
Eas ⁽³⁾	Single pulse avalanche energy	200	mJ
dV/dt ⁽⁴⁾	Drain-body diode dynamic dV/dt ruggedness	5.0	V/ns
T _{stg}	Storage temperature range	EE to 175	°C
Tj	Operating junction temperature range	-55 to 175	°C

Notes:

⁽¹⁾ Current is limited by package.

 $^{\left(2\right) }$ Pulse width is limited by safe operating area.

 $^{(3)}$ starting T_{j} = 25 °C, I_{D} = 20 A, V_{DD} = 30 V.

 $^{(4)}\text{I}_{\text{SD}}\text{=}$ 80 A; di/dt = 600 A/µs; V_DD = 48 V; T_j < T_{jmax}

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-pcb ⁽¹⁾	R _{thj-pcb} ⁽¹⁾ Thermal resistance junction-pcb		°C/W
Rthj-amb	R _{thj-amb} Thermal resistance junction-ambient		0.700

Notes:

⁽¹⁾When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

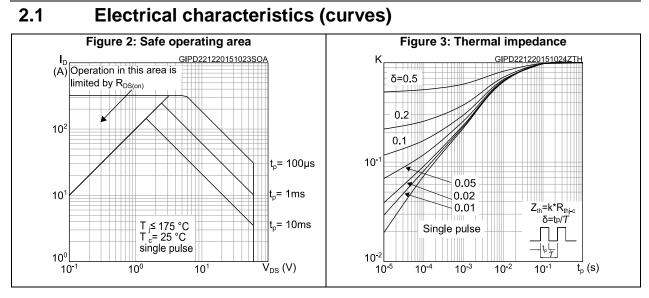
	Table 4: Static						
Symbol	ymbol Parameter Test conditions Min. Typ. Max. U				Unit		
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	60			V	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 60 V$			1	μA	
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = 20 V			100	nA	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2		4	V	
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I_D = 40 A		4.2	5.0	mΩ	

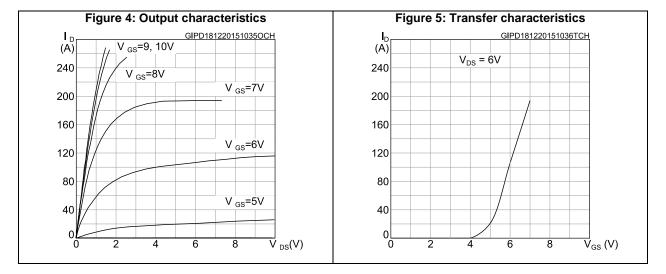
Table	5:	Dynamic

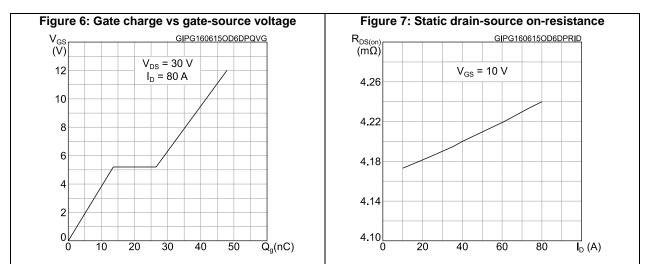
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	2600	-	
Coss	Output capacitance	V _{DS} = 30 V, f = 1 MHz, V _{GS} = 0 V	-	1200	-	pF
Crss	Reverse transfer capacitance	100 - 0 1	-	115	-	
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 80 \text{ A},$	-	42	-	
Qgs	Gate-source charge V _{GS} = 10 V (see Fig 14: "Test circuit for		-	13.6	-	nC
Q _{gd}	Gate-drain charge	charge behavior")	-	13	-	

Table 6: Switching times

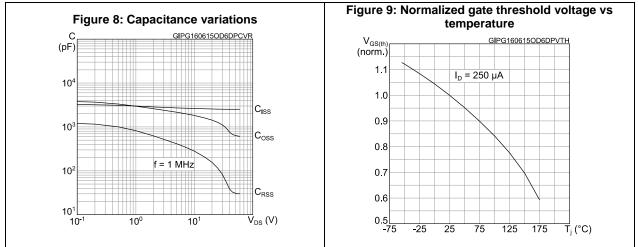
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 V, I_D = 40 A,$	I	24	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	I	44	-	
t _{d(off)}	Turn-off delay time	for resistive load switching	-	62	-	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	24	-	

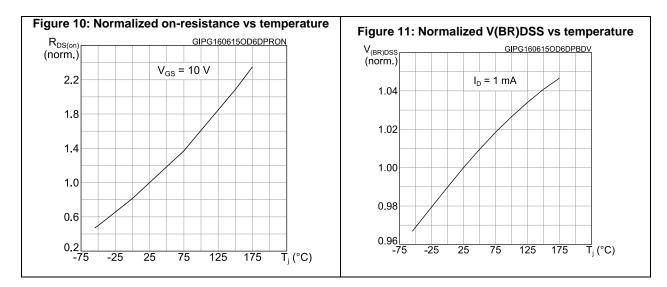

Table 7: Source-drain diode

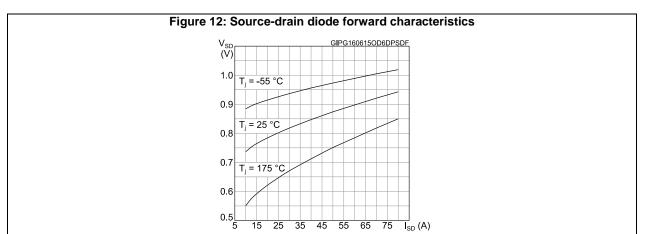

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vsd ⁽¹⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 80 A$	-		1.2	V
t _{rr}	Reverse recovery time	$I_{SD} = 80 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	50		ns
Qrr	Reverse recovery charge	V _{DD} = 48 V (see Figure 15: "Test circuit for inductive	-	56		nC
I _{RRM}	Reverse recovery current	load switching and diode recovery times")	-	2.2		А


Notes:

 $^{(1)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

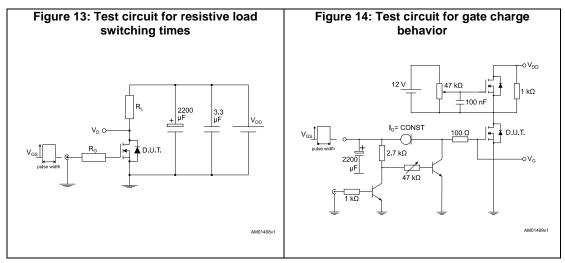


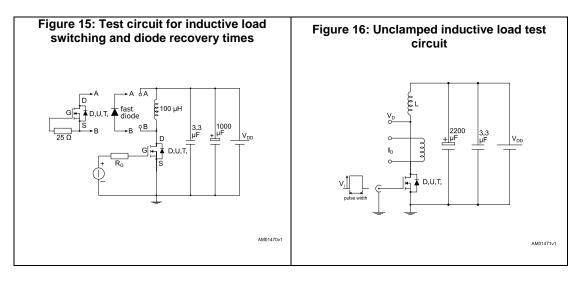

DocID028788 Rev 2

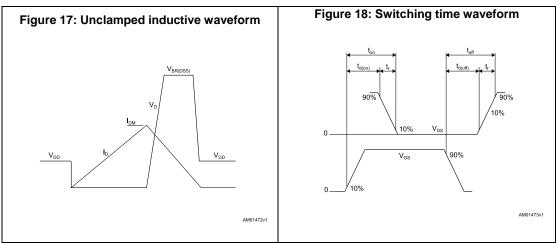

5/13

Electrical characteristics

STD130N6F7

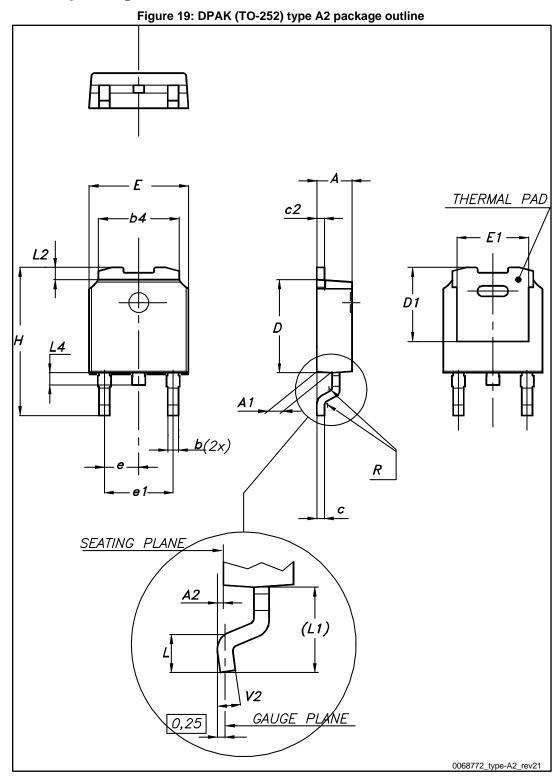






3 Test circuits

DocID028788 Rev 2


7/13

4 Package information

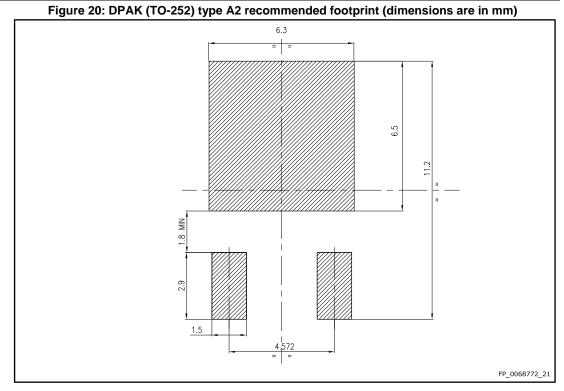
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 DPAK package information

DocID028788 Rev 2

Package information

STD130N6F7


Tormation	Table 8: DPAK (TO-252)) type A2 mechanical da	ta
Dim.		mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

10/13

STD130N6F7

Package information

5 Revision history

 Table 9: Document revision history

Date	Revision	Changes
17-Dec-2015	1	First release.
10-Oct-2016	2	Document status changed from preliminary to production data. Minor text changes.

STD130N6F7

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

