
in a TO-247 long leads package

Datasheet

TO-247 long leads

Product status link				
STGWA50IH65DF				
Product summary				
Order code	STGWA50IH65DF			
Marking	G50IH65DF			
Package	TO-247 long leads			
Packing	Tube			

Features

- Designed for soft-commutation only
- Maximum junction temperature: T_J = 175 °C
- V_{CE(sat)} = 1.5 V (typ.) @ I_C = 50 A
- Minimized tail current
- Tight parameter distribution
- Low thermal resistance
- Low voltage drop freewheeling co-packaged diode

Trench gate field-stop 650 V, 50 A, soft switching IH series IGBT

Positive V_{CE(sat)} temperature coefficient

Applications

- Induction heating
- Resonant converters
- Microwave ovens

Description

lectronics sales office

The newest IGBT 650 V soft-switching IH series has been developed using an advanced proprietary trench gate field-stop structure, whose performance is optimized both in conduction and switching losses for soft commutation. A freewheeling diode with a low drop forward voltage is included. The result is a product specifically designed to maximize efficiency for any resonant and softswitching applications.

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V_{GE} = 0 V)	650	V
1.	Continuous collector current at T_C = 25 °C	100	
Ι _C	Continuous collector current at T_C = 100 °C	50	А
I _{CP} ⁽¹⁾	Pulsed collector current	150	
V_{GE}	Gate-emitter voltage	±20	V
1_	Continuous forward current at T _C = 25 $^{\circ}$ C	50	
١ _F	Continuous forward current at T_C = 100 °C	25	А
I _{FP} ⁽¹⁾	Pulsed forward current	150	
P _{TOT}	Total power dissipation at T _C = 25 $^{\circ}$ C	300	W
T _{STG}	Storage temperature range	- 55 to 150	°C
TJ	Operating junction temperature range	- 55 to 175	

Table 1. Absolute maximum ratings

1. Pulse width limited by maximum junction temperature.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
Thermal resistance junction-case IGBT		0.5	
R _{thJC}	Thermal resistance junction-case diode	1.47	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	

2 Electrical characteristics

57

 T_C = 25 °C unless otherwise specified

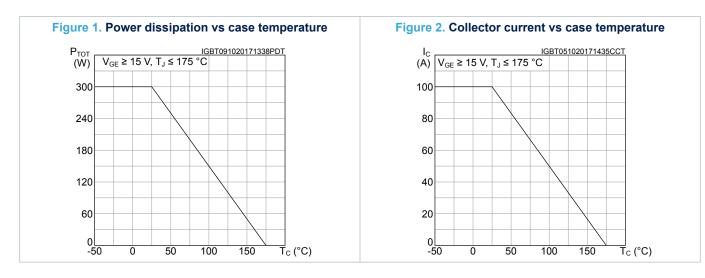
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V _{GE} = 0 V, I _C = 250 μA	650			
		V _{GE} = 15 V, I _C = 50 A		1.50	2.00	
VCE(eat)	Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 50 A, T _J = 125 °C		1.75		V
		V_{GE} = 15 V, I _C = 50 A, T _J = 175 °C		1.90		
	Forward on-voltage	I _F = 25 A		1.75	2.50	
		I _F = 25 A, T _J = 125 °C		1.50		
V _F		I _F = 25 A, T _J = 175 °C		1.40		
		I _F = 50 A		2.15		
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V			±250	nA

Table 3. Static characteristics

Table 4. Dynamic characteristics

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	2980	-	
C _{oes}	Output capacitance	V_{CE} = 25 V, f = 1 MHz, V_{GE} = 0 V	-	150	-	pF
C _{res}	Reverse transfer capacitance		-	81	-	
Qg	Total gate charge		-	158	-	
Q _{ge}	Gate-emitter charge	V_{CC} = 520 V, I _C = 50 A, V_{GE} = 0 to 15 V (see Figure 23. Gate charge test circuit)	-	25	-	nC
Q _{gc}	Gate-collector charge		-	72	-	

Table 5. IGBT switching characteristics (inductive load)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-delay time	$V_{\rm CC}$ = 400 V, I _C = 50 A,	-	260	-	
t _f	Current fall time	V_{GE} = 15 V, R_G = 22 Ω (see Figure 21. Test circuit for inductive load switching)	-	17	-	ns
t _{d(off)}	Turn-off-delay time	V_{CC} = 400 V, I _C = 50 A,	-	270	-	
t _f	Current fall time	V_{GE} = 15 V, R_G = 22 Ω , T_J = 175 °C (see Figure 21. Test circuit for inductive load switching)	-	24	-	ns

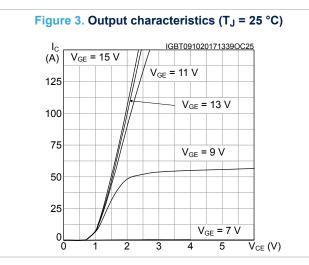

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	L = 100 µH, C _{snub} = 22 nF					
	V_{CC} = 320 V, R_{G} = 10 $\Omega,$	-				
	I _C = 50 A		284	-		
	(see Figure 22. Test circuit for snubbed inductive load switching)				1	
E _{off} ⁽¹⁾	Turn-off switching energy	L = 100 µH, C _{snub} = 22 nF,				μJ
		V_{CC} = 320 V, R_{G} = 10 $\Omega,$				
	I _C = 50 A, T _J = 175 °C	-	469	-		
		(see Figure 22. Test circuit for snubbed inductive load switching)				

Table 6. IGBT switching characteristics	(snubbed inductive load)
---	--------------------------

1. Including the tail of the collector current.

2.1 Electrical characteristics (curves)

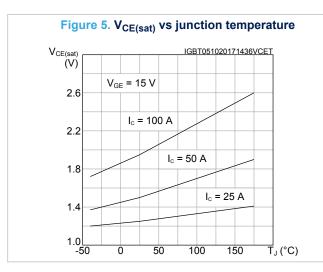
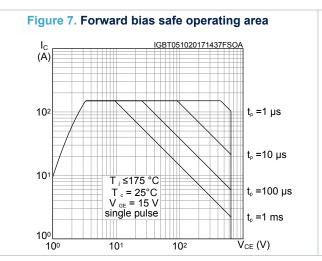
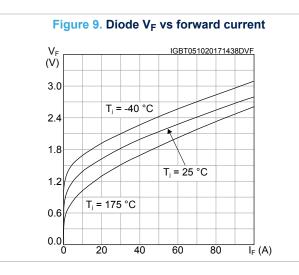
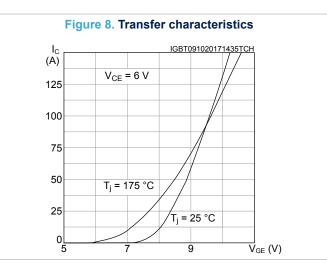
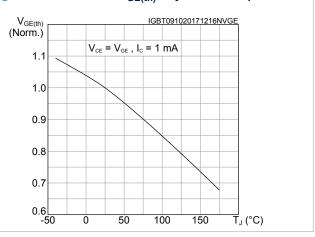
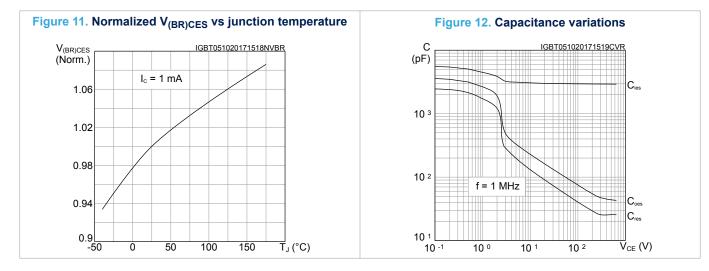
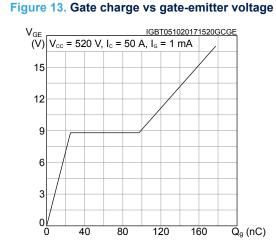




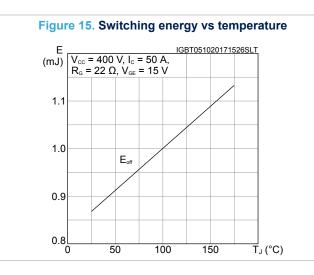
Figure 4. Output characteristics (T_J = 175 °C) I_C (A) GBT091020171340OC175 V_{GE} = 11 V V_{GE} = 15 V 125 100 V_{GE} = 13 V $V_{GE} = 9 V$ 75 50 25 $V_{GE} = 7 V$ oL 0 2 3 V_{CE} (V) 4 5

Figure 6. V_{CE(sat)} vs collector current V_{CE(sat)} (V) IGBT091020171342VCEC V_{GE} = 15 V 3.0 2.5 T_j = 175 °C 2.0 1.5 T_i = -40 °C 1.0 T_i = 25 °C 0.5L 0 25 50 75 100 125 Ī_C (A)

57


Figure 10. Normalized V_{GE(th)} vs junction temperature



DS117	796 - Rev 3	
ded from	Arrow.com.	

Download

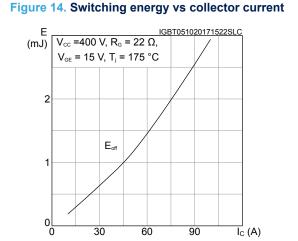
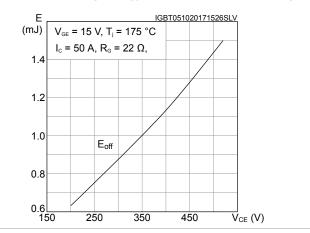
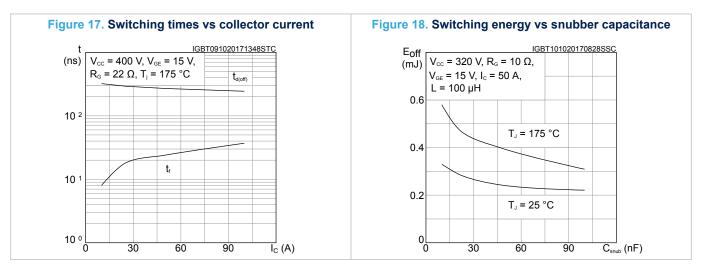
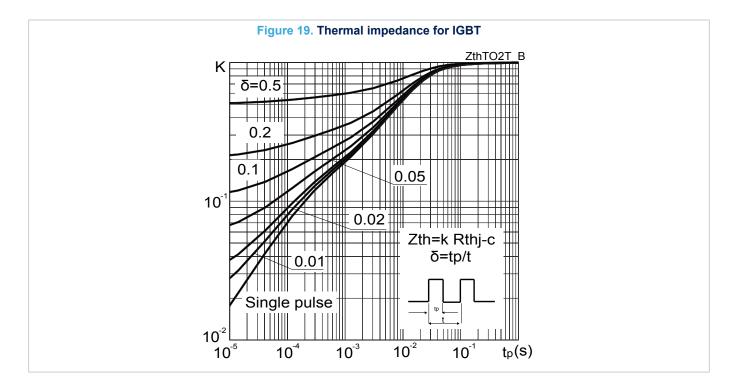
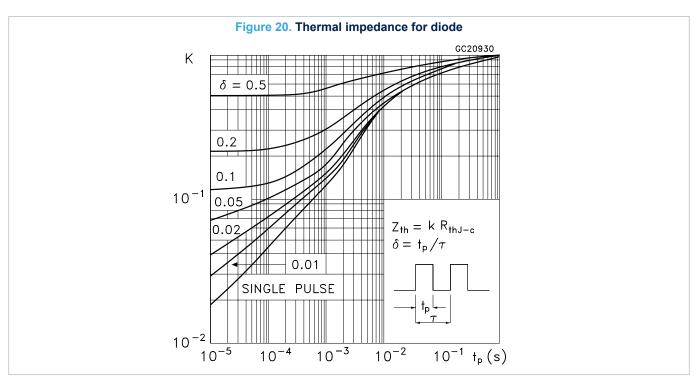
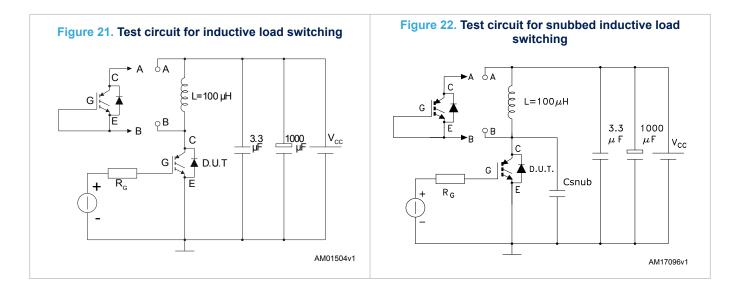
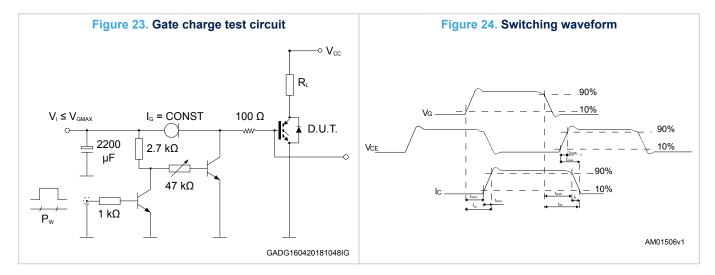






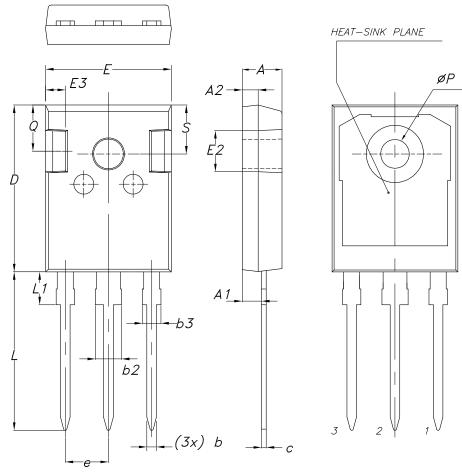
Figure 16. Switching energy vs collector-emitter voltage





DS11796 - Rev 3 Downloaded from Arrow.com.

3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 long leads package information

Figure 25. TO-247 long leads package outline

8463846_2_F

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
E	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25

Table 7. TO-247 long leads package mechanical data

Revision history

Table 8. Document revision history

Date	Revision	Changes
02-Sep-2016	1	First release.
05-Oct-2017	2	 Modified title, silhouette, features and description. Modified Table 2: "Absolute maximum ratings", Table 3: "Thermal data", Table 4: "Static characteristics", Table 5: "Dynamic characteristics", Table 6: "IGBT switching characteristics (inductive load)" and Table 7: "IGBT switching characteristics (snubbed inductive load)". Added Section 2.1: "Electrical characteristics (curves)". Minor text changes.
15-Apr-2020	3	Updated Internal schematic in cover page. Updated Figure 13. Gate charge vs gate-emitter voltage. Minor text changes.

Contents

1	Elect	Electrical ratings			
2	Electrical characteristics				
	2.1	Electrical characteristics (curves)	. 5		
3	Test	circuits	.9		
4	Pack	age information	10		
	4.1	TO-247 long leads package information	10		
Rev	ision ł	nistory	12		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved