

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees

October 2001

IGBT

SGF80N60UF

Ultra-Fast IGBT

General Description

Fairchild's Insulated Gate Bipolar Transistor(IGBT) UF series provides low conduction and switching losses. UF series is designed for the applications such as motor control and general inverters where High Speed Switching is required.

Features

- High Speed Switching
- Low Saturation Voltage : $V_{CE(sat)} = 2.1 \text{ V } @ I_C = 40 \text{A}$
- High Input Impedance

Application

AC & DC Motor controls, General Purpose Inverters, Robotics, Servo Controls

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGF80N60UF	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	80	А
I _C	Collector Current	@ T _C = 100°C	40	Α
I _{CM (1)}	Pulsed Collector Current	-	220	Α
P _D	Maximum Power Dissipation	@ T _C = 25°C	110	W
	Maximum Power Dissipation	@ T _C = 100°C	45	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Secon	nds	300	°C

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.1	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250uA$	600			V
$\Delta B_{VCES}/$ ΔT_J	Temperature Coeff. of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 40 \text{mA}, V_{CE} = V_{GE}$	3.5	4.5	6.5	V
	Collector to Emitter	$I_C = 40A$, $V_{GE} = 15V$		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	$I_C = 80A$, $V_{GE} = 15V$		2.6		V
	C Characteristics Input Capacitance		T	2790		pF
C _{ies}	Output Capacitance	$V_{CE} = 30V_{,} V_{GE} = 0V_{,}$		350		рF
C _{oes} C _{res}	Reverse Transfer Capacitance	f = 1MHz		100		pF
t _{d(on)}	ng Characteristics Turn-On Delay Time			23		ns
t _r	Rise Time	_				
t _{d(off)}				50		ns
	Turn-Off Delay Time	$V_{CC} = 300 \text{ V. } I_{C} = 40 \text{A}.$		50 90	 130	-
	Turn-Off Delay Time Fall Time	$V_{CC} = 300 \text{ V}, I_{C} = 40\text{A},$ $R_{G} = 5\Omega, V_{GF} = 15\text{V},$				ns
t _f		$V_{CC} = 300 \text{ V}, I_C = 40\text{A},$ $R_G = 5\Omega, V_{GE} = 15\text{V},$ Inductive Load, $T_C = 25^{\circ}\text{C}$		90	130	ns ns
t _f E _{on}	Fall Time	$R_{G} = 5\Omega, V_{GE} = 15V,$		90 50	130 150	ns ns ns
t _f E _{on} E _{off}	Fall Time Turn-On Switching Loss	$R_{G} = 5\Omega, V_{GE} = 15V,$		90 50 570	130 150	ns ns ns uJ uJ
t _f E _{on} E _{off} E _{ts}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_{G} = 5\Omega, V_{GE} = 15V,$		90 50 570 590	130 150 	ns ns ns uJ
t _f E _{on} E _{off} E _{ts}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_{G} = 5\Omega, V_{GE} = 15V,$	 	90 50 570 590 1160	130 150 1500	ns ns ns uJ uJ
t_f E_{on} E_{off} E_{ts} $t_{d(on)}$ t_r	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40\text{A}$,	 	90 50 570 590 1160 30	130 150 1500	ns ns ns uJ uJ uJ
t_f E_{on} E_{off} E_{ts} $t_{d(on)}$ t_r $t_{d(off)}$	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25$ °C	 	90 50 570 590 1160 30 55	130 150 1500 	ns ns ns uJ uJ uJ ns
$\begin{array}{l} t_{\rm f} \\ E_{\rm on} \\ E_{\rm off} \\ E_{\rm ts} \\ \end{array}$ $\begin{array}{l} t_{\rm d(on)} \\ t_{\rm r} \\ \end{array}$	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40\text{A}$,	 	90 50 570 590 1160 30 55 150	130 150 1500 200	ns ns ns uJ uJ uJ ns ns
t _f E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{ton}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40\text{A}$, $I_C = 40\text$	 	90 50 570 590 1160 30 55 150	130 150 1500 200 250	ns ns ns uJ uJ uJ ns ns
t _f E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40\text{A}$, $I_C = 40\text$	 	90 50 570 590 1160 30 55 150 160 630	130 150 1500 200 250	ns ns ns uJ uJ ns ns ns
t _f E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{ts}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40\text{A}$, $R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	 	90 50 570 590 1160 30 55 150 160 630 940	130 150 1500 200 250 	ns ns ns uJ uJ ns ns ns us
t _f E _{on} E _{off} E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{on} E _{off} E _{on} E _{off} E _{ts} Q _g Q _{ge}	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40A$, $R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$ $V_{CE} = 300 \text{ V}$, $I_C = 40A$,	 	90 50 570 590 1160 30 55 150 160 630 940 1580	130 150 1500 200 250 2000	an san Lu
tf Eon Eoff Ets td(on) tr td(off) tf Eon Coff Coff Coff Coff Coff Coff Coff C	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn- On Switching Loss Turn- Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 300 \text{ V}$, $I_C = 40\text{A}$, $R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	 	90 50 570 590 1160 30 55 150 160 630 940 1580 175	130 150 1500 1500 200 250 2000 250	ns ns ns uJ uJ ns ns ns us us us ns ns ns ns ns

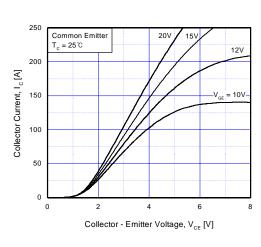


Fig 1. Typical Output Characteristics

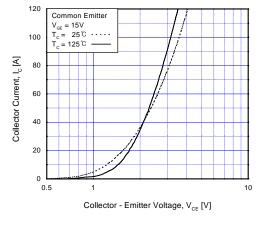


Fig 2. Typical Saturation Voltage Characteristics

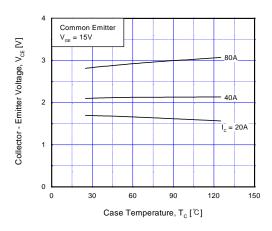


Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

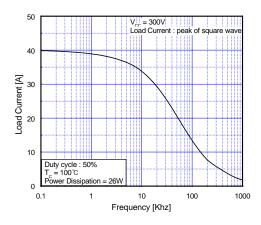


Fig 4. Load Current vs. Frequency

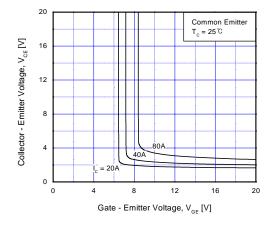


Fig 5. Saturation Voltage vs. V_{GE}

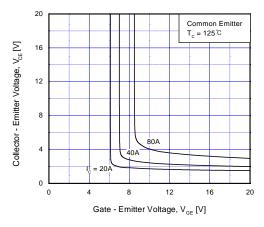
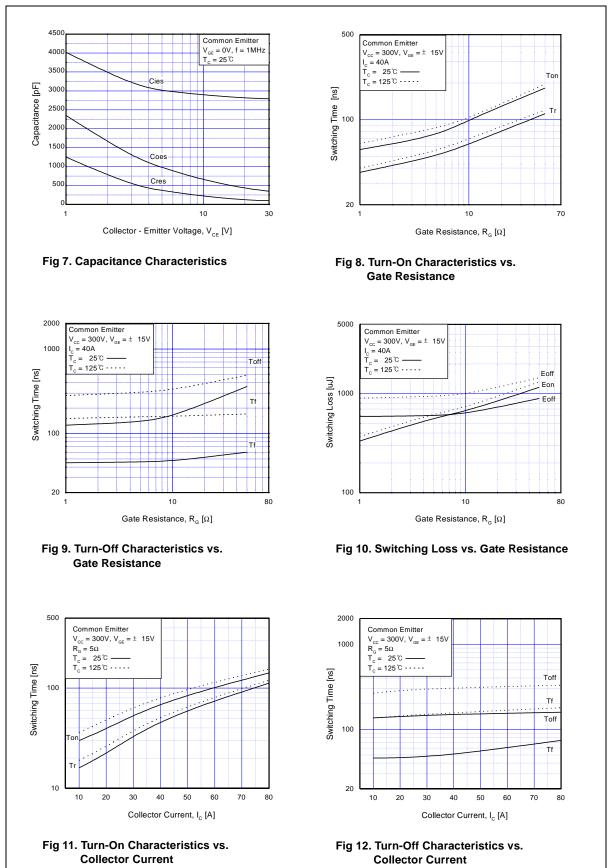
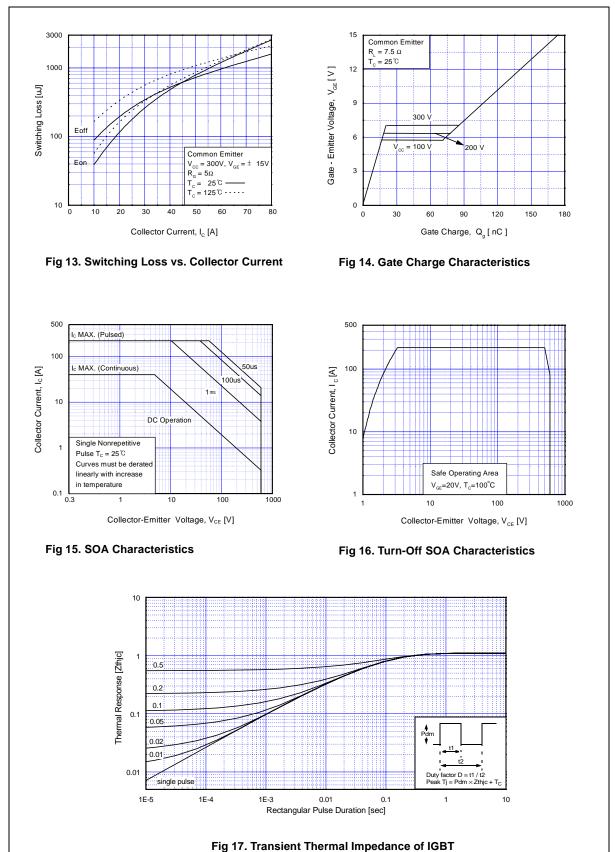
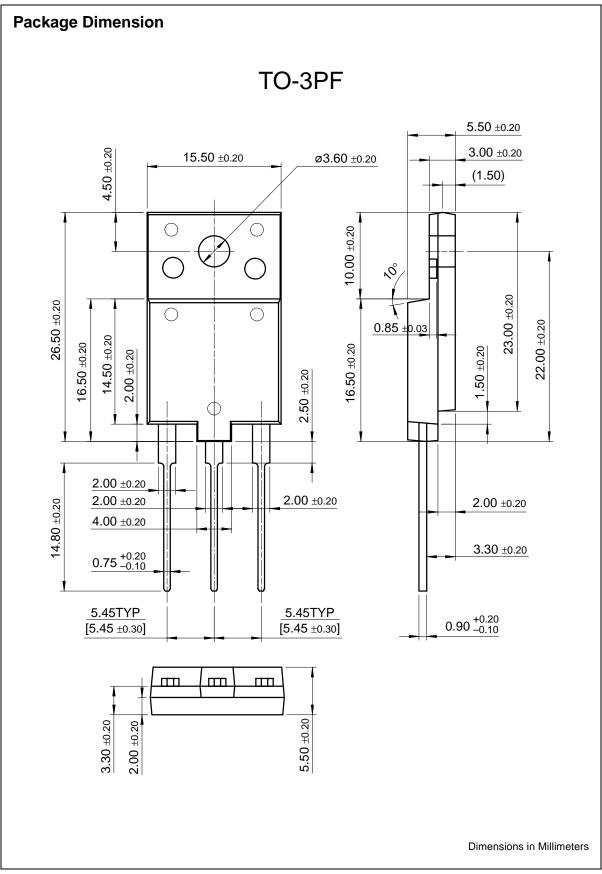




Fig 6. Saturation Voltage vs. $V_{\rm GE}$


©2001 Fairchild Semiconductor Corporation SGF80N60UF Rev. A

©2001 Fairchild Semiconductor Corporation SGF80N60UF Rev. A

©2001 Fairchild Semiconductor Corporation SGF80N60UF Rev. A

©2001 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST [®]	OPTOLOGIC™	SMART START™	VCX^{TM}
Bottomless™	FASTr™	OPTOPLANAR™	STAR*POWER™	
CoolFET™	FRFET™	PACMAN™	Stealth™	
$CROSSVOLT^{r_{M}}$	GlobalOptoisolator™	POP™	SuperSOT™-3	
DenseTrench™	GTO™	Power247™	SuperSOT™-6	
DOME™	HiSeC™	PowerTrench [®]	SuperSOT™-8	
EcoSPARK™	ISOPLANAR™	QFET™	SyncFET™	
E ² CMOS™	LittleFET™	QS™	TruTranslation™	
EnSigna™	MicroFET™	QT Optoelectronics™	TinyLogic™	
FACT™	MicroPak™	Quiet Series™	UHC™ _	
FACT Quiet Series™	MICROWIRE™	SLIENT SWITCHER®	UltraFET [®]	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H4

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com