

STGBL6NC60DI, STGDL6NC60DI STGFL6NC60DI, STGPL6NC60DI

6 A, 600 V hyper fast IGBT

Features

- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)
- Very high frequency operation
- Very soft ultrafast recovery antiparallel diode

Applications

- High frequency inverters
- SMPS and PFC (hard switching too)
- High frequency motor drive

Description

Thanks to a new lifetime control system, this new PowerMESHTM technology-based series of devices exhibits very low turn-off energy, representing the best trade-off between on-state voltage and switching losses and thus allowing very high operating frequencies.

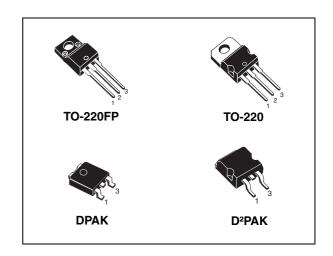


Figure 1. Internal schematic diagram

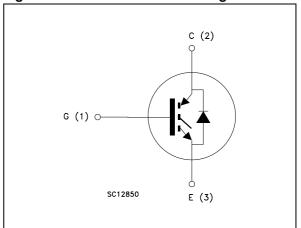


Table 1. Device summary

Order codes	Marking	Package	Packaging
STGBL6NC60DIT4	GBL6NC60DI	D ² PAK	Tape and reel
STGDL6NC60DIT4	GDL6NC60DI	DPAK	Tape and reel
STGPL6NC60DI	GPL6NC60DI	TO-220	Tube
STGFL6NC60DI	GFL6NC60DI	TO-220FP	Tube

August 2009 Doc ID 15536 Rev 2 1/18

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	0
5	Packaging mechanical data	5
6	Revision history	7

1 Electrical ratings

Table 2. Absolute maximum ratings

	Symbol Parameter		Value		
Symbol			TO-220 D²PAK	TO-220FP	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)		600		٧
I _C ⁽¹⁾	Collector current (continuous) at T _C = 25 °C	13	14	7	Α
I _C ⁽¹⁾	Collector current (continuous) at T _C = 100 °C	5	6	3	Α
I _{CL} ⁽²⁾	Turn-off latching current		18		Α
I _{CP} ⁽³⁾	Pulsed collector current		18		Α
V _{GE}	Gate-emitter voltage		±20		٧
I _F	Diode RMS forward current at T _C = 25 °C		10		Α
I _{FSM}	Surge non repetitive forward current t _p =10ms sinusoidal		25		Α
P _{TOT}	Total dissipation at T _C = 25 °C	50	56	22	W
V _{ISO}	Isolation withstand voltage (RMS) from all three leads to external heat sink (t=1 s; T _C =25 °C)			2500	V
T _j	Operating junction temperature		– 55 to 15	50	°C

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Vclamp = 80%,(V_{CES}), Tj =150°C, R_G = 10 Ω , V_{GE} = 15 V
- 3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

Table 3. Thermal data

Symbol	Parameter	DPAK	TO-220 D²PAK	TO-220FP	Unit
D	Thermal resistance junction-case IGBT max.	2.5	2.2	5.6	°C/W
R _{thj-case}	Thermal resistance junction-case diode max.	4.5	4	7	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	100	62.5		°C/W

2 Electrical characteristics

(T_j=25 $^{\circ}$ C unless otherwise specified)

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{GE} = 15 \text{ V}, I_{C} = 1.5 \text{ A}$ $V_{GE} = 15 \text{ V}, I_{C} = 3 \text{ A}$ $V_{GE} = 15 \text{ V}, I_{C} = 3 \text{ A}, T_{j} = 125 ^{\circ}\text{C}$		1.9 2.2 2	2.9	V V V
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 250 μA	3.75		5.75	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V V _{CE} = 600 V, T _j = 125 °C			50 5	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			±100	nA
9 _{fs}	Forward transconductance	$V_{CE} = 15 V_{,} I_{C} = 3 A$		3		S

Table 5. Dynamic electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	208 32.5 5.4	1	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V_{CE} = 390 V, I_{C} = 3 A, V_{GE} = 15 V (see Figure 17)	-	12 2.6 4.9	-	nC nC nC

Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 390 V, I_{C} = 3 A R_{G} = 10 Ω V_{GE} = 15 V (see Figure 18)	-	6.7 3.7 930	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_{C} = 3 \text{ A}$ $R_{G} = 10 \Omega \text{ V}_{GE} = 15 \text{ V},$ $Tj = 125 \text{ °C (see Figure 18)}$	-	6.5 4 820	-	ns ns A/µs
$t_r(V_{off})$ $t_d(_{off})$ t_f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 390 V, I_{C} = 3 A, R_{GE} = 10 Ω V_{GE} = 15 V (see Figure 18)	-	17 46 47	-	ns ns ns
$\begin{array}{c} t_{r}(V_{off}) \\ t_{d}(_{off}) \\ t_{f} \end{array}$	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V, } I_{C} = 3 \text{ A,}$ $R_{GE} = 10 \Omega \text{ V}_{GE} = 15 \text{ V,}$ $Tj = 125 ^{\circ}\text{C}$ (see Figure 18)	-	35 67 55	-	ns ns ns

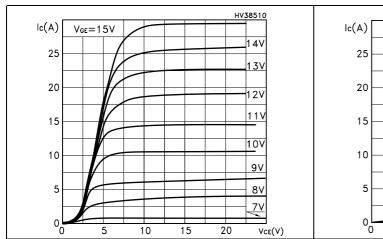
Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} (1)	Turn-on switching losses	V _{CC} = 390 V, I _C = 3 A		32		μJ
E _{off} ⁽²⁾	Turn-off switching losses	$R_G = 10 \Omega, V_{GE} = 15 V$	-	24	-	μJ
E _{ts}	Total switching losses	(see Figure 18)		56		μJ
E _{on} (1)	Turn-on switching losses	$V_{CC} = 390 \text{ V}, I_{C} = 3 \text{ A}$		51		μJ
E _{off} ⁽²⁾	Turn-off switching losses	$R_G = 10 \Omega, V_{GE} = 15 V,$	-	46	-	μJ
E _{ts}	Total switching losses	Tj = 125 °C (see Figure 18)		97		μJ

^{1.} Eon is the turn-on losses when a typical diode is used in the test circuit in *(see Figure 19)*. If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25°C and 125°C)

Table 8. Collector-emitter diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 1 A I _F = 3 A I _F = 3 A, Tj=125 °C	-	1.8 1.3	1.7	V V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 3 \text{ A}, V_R = 40 \text{ V},$ di/dt = 100 A/ μ s (see Figure 19)	-	23 21 1.5		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 3 \text{ A}, V_R = 40 \text{ V},$ $T_j = 125 \text{ °C}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ (see Figure 19)	1	47 51 2		ns nC A



^{2.} Turn-off losses include also the tail of the collector current

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

Figure 3. Transfer characteristics

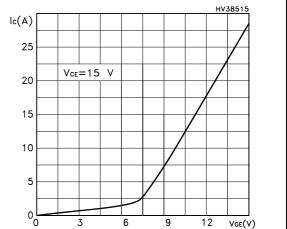
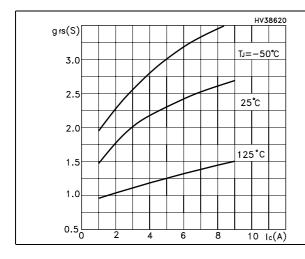



Figure 4. Transconductance

Figure 5. Collector-emitter on voltage vs temperature

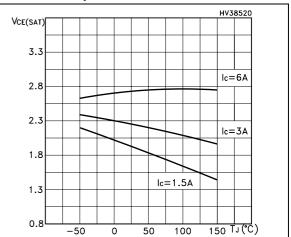
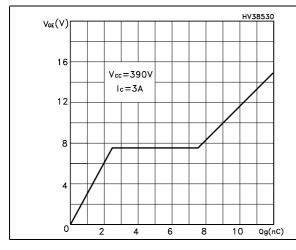
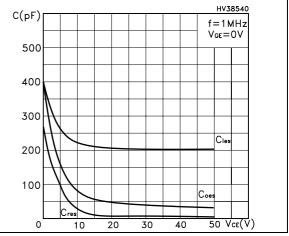




Figure 6. Gate charge vs gate-source voltage Figure 7. Capacitance variations

6/18 Doc ID 15536 Rev 2

Figure 8. Normalized gate threshold voltage Figure 9. Collector-emitter on voltage vs vs temperature collector current

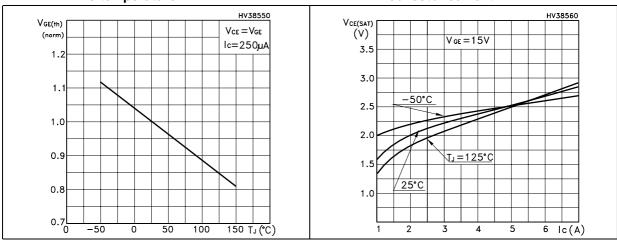


Figure 10. Normalized breakdown voltage vs Figure 11. Switching losses vs temperature temperature

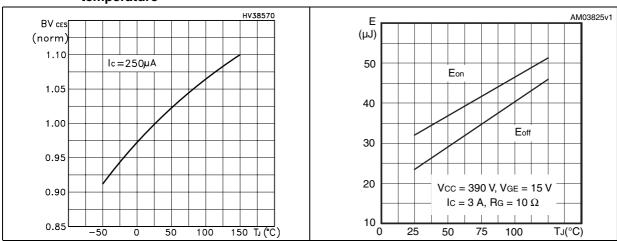


Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current

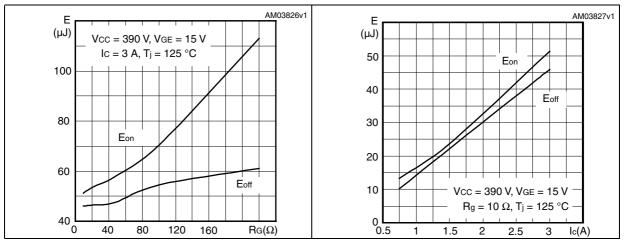
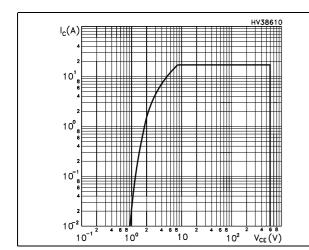
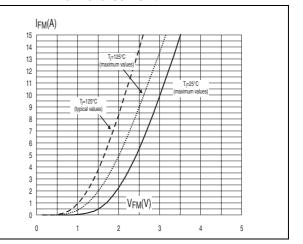




Figure 14. RBSOA

Figure 15. Forward voltage drop versus forward current

8/18 Doc ID 15536 Rev 2

3 Test circuits

Figure 16. Test circuit for inductive load switching

Figure 17. Gate charge test circuit

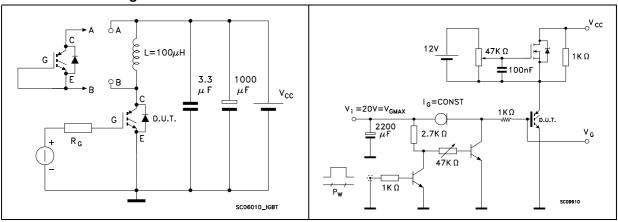
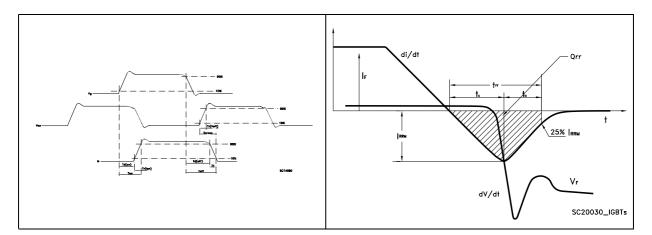
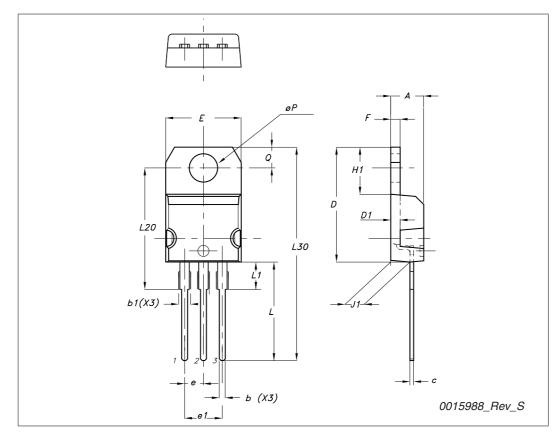



Figure 18. Switching waveform

Figure 19. Diode recovery time waveform

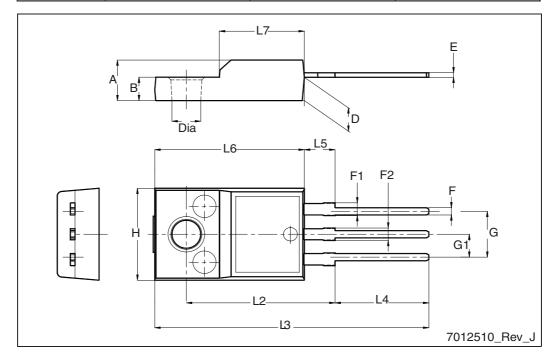

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

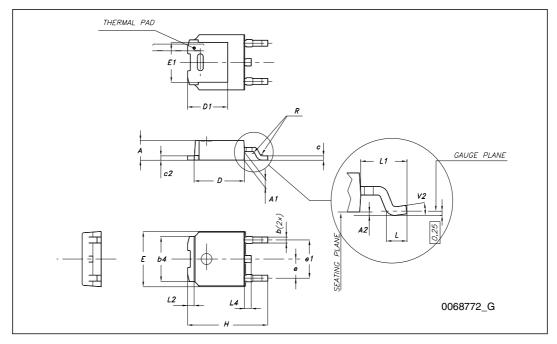
5/

TO-220 t	vpe A	mechanica	l data
----------	-------	-----------	--------

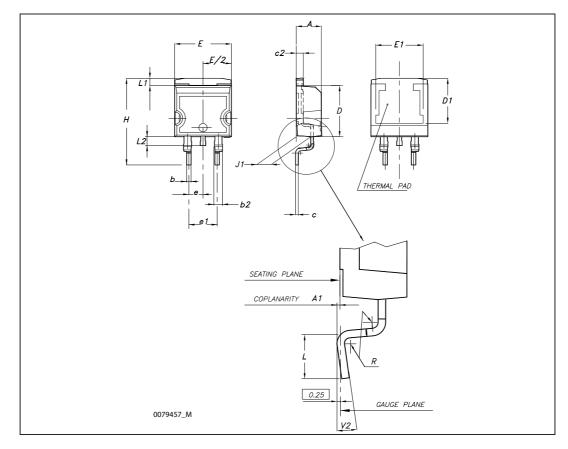
Di	mm			
Dim	Min	Тур	Max	
A	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.70	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13		14	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
ØP	3.75		3.85	
Q	2.65		2.95	



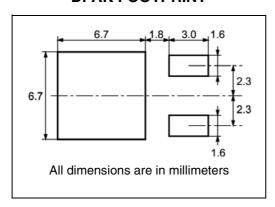
Doc ID 15536 Rev 2


TO-220FP mechanical data

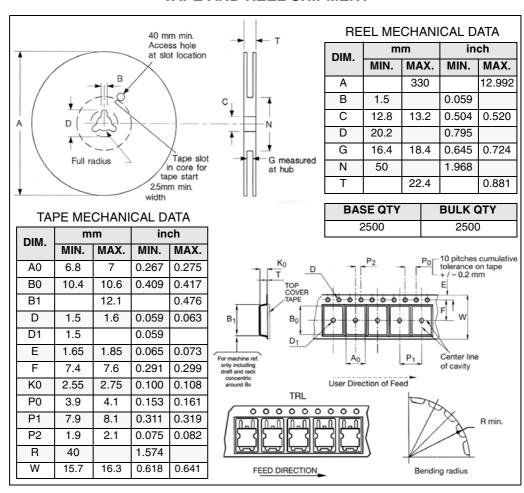
Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.5
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2


TO-252 ((DPAK)	mechanical	data
----------	--------	------------	------

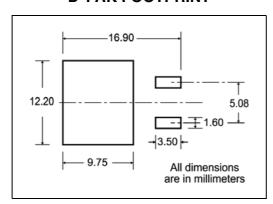
DIM.		mm.			
	min.	typ	max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1				
L1		2.80			
L2		0.80			
L4	0.60		1		
R		0.20			
V2	0 °		8 °		

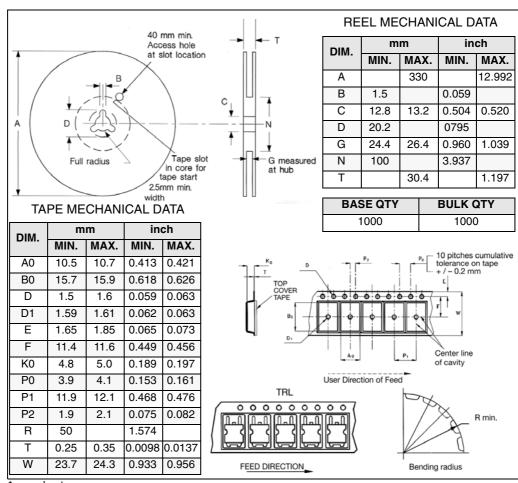

D²PAK (TO-263) mechanical data

Dim		mm			inch		
	Min	Тур	Max	Min	Тур	Max	
Α	4.40		4.60	0.173		0.181	
A1	0.03		0.23	0.001		0.009	
b	0.70		0.93	0.027		0.037	
b2	1.14		1.70	0.045		0.067	
С	0.45		0.60	0.017		0.024	
c2	1.23		1.36	0.048		0.053	
D	8.95		9.35	0.352		0.368	
D1	7.50			0.295			
E	10		10.40	0.394		0.409	
E1	8.50			0.334			
е		2.54			0.1		
e1	4.88		5.28	0.192		0.208	
Н	15		15.85	0.590		0.624	
J1	2.49		2.69	0.099		0.106	
L	2.29		2.79	0.090		0.110	
L1	1.27		1.40	0.05		0.055	
L2	1.30		1.75	0.051		0.069	
R		0.4			0.016		
V2	0°		8°	0°		8°	



5 Packaging mechanical data


DPAK FOOTPRINT


TAPE AND REEL SHIPMENT

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

* on sales type

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
27-Mar-2009	1	First release
13-Aug-2009	2	Document status promoted from preliminary data to datasheet, inserted Section 2.1: Electrical characteristics (curves), updated TO-220 and TO-220FP package mechanical data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

18/18 Doc ID 15536 Rev 2

