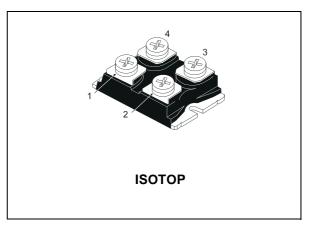
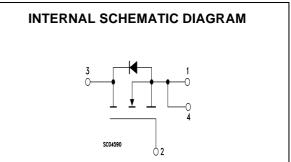


N-CHANNEL 600V - 0.098Ω - 40A ISOTOP PowerMesh™II MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STE40NC60	600V	< 0.13Ω	40 A


- TYPICAL $R_{DS}(on) = 0.098 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
 400% AV(ALANCUE TESTED
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED


DESCRIPTION

The PowerMESHTMII is the evolution of the first generation of MESH OVERLAYTM. The layout refinements introduced greatly improve the Ron*area figure of merit while keeping the device at the leading edge for what concerns swithing speed, gate charge and ruggedness.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage ($V_{GS} = 0$)	600	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	600	V
V _{GS}	Gate- source Voltage	±30	V
Ι _D	Drain Current (continuos) at T _C = 25°C	40	Α
I _D	Drain Current (continuos) at T _C = 100°C	23	Α
I _{DM} (•)	Drain Current (pulsed)	160	Α
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	460	W
	Derating Factor	3.68	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	3	V/ns
VISO	Insulation Winthstand Voltage (AC-RMS)	2500	V
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C
)Pulse width li Iay 2002	mited by safe operating area	(1) I _{SD} ≤ 40A, di/dt≤100 A/μs, V _{DD} ≤ 24V, Tj≤T _{jMAX}	1/8

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case	Max	0.272	°C/W
Rthc-h	Thermal Resistance Case-heatsink with C Grease Applied	Conductive	0.05	°C/W

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	40	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	1150	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	600			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			10 100	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30V$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 20A		0.098	0.130	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max,}$ $I_{D} = 15 \text{ A}$		42		S
Ciss	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		11.1		nF
Coss	Output Capacitance			1190		pF
C _{rss}	Reverse Transfer Capacitance			100		pF

Note: 1. Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 1.5 %.

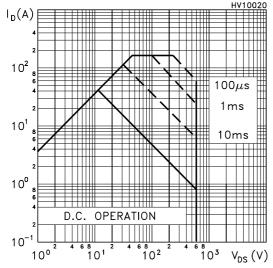
ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

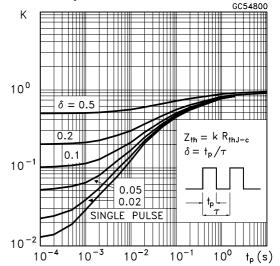
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 300 \text{ V}, I_D = 20 \text{ A}$		49		ns
tr	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		42		ns
Qg	Total Gate Charge	$V_{DD} = 480V, I_D = 40A,$		307.5	430	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		48		nC
Q _{gd}	Gate-Drain Charge			146.5		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 480V, I_D = 40A,$		41		ns
t _f	Fall Time	$R_G = 4.7\Omega, V_{GS} = 10V$ (see test circuit, Figure 5)		26		ns
t _c	Cross-over Time			74		ns

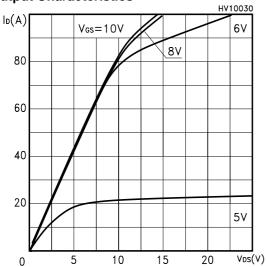

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				40	А
I _{SDM} (2)	Source-drain Current (pulsed)				160	А
V _{SD} (1)	Forward On Voltage	$I_{SD} = 40A, V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	I _{SD} = 40 A, di/dt = 100 A/µs,		685		ns
Qrr	Reverse Recovery Charge	V _{DD} = 40 V, T _j = 150 °C (see test circuit, Figure 5)		15		μC
I _{RRM}	Reverse Recovery Current			44		А

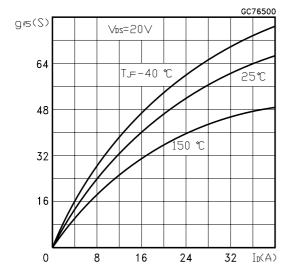

 Note:
 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.

 2. Pulse width limited by safe operating area.

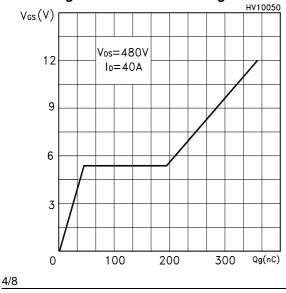
Safe Operating Area

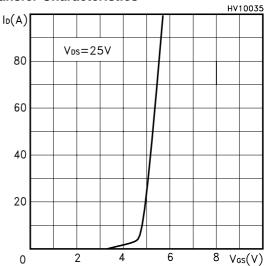


Thermal Impedence

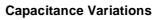


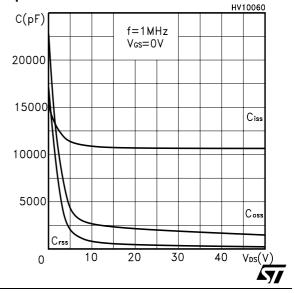
57

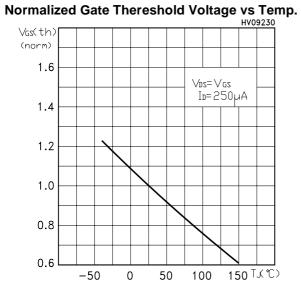

Output Characteristics


Transconductance

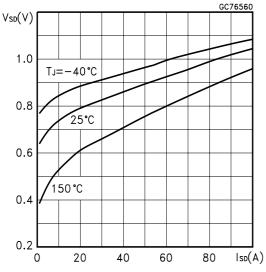

Gate Charge vs Gate-source Voltage

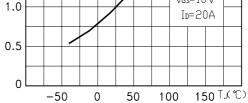



Transfer Characteristics

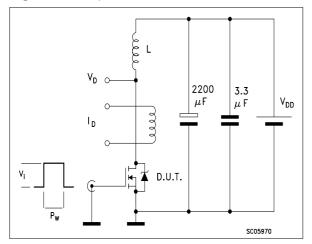


Static Drain-source On Resistance

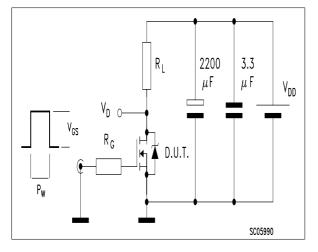




Source-drain Diode Forward Characteristics


Ros(on) (norm) 2.5 2.0 1.5 VGs=10∨ 1.0

Normalized On Resistance vs Temperature



57

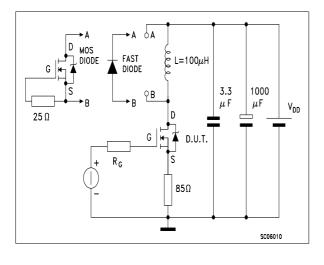
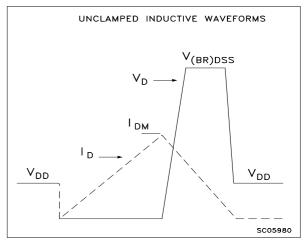
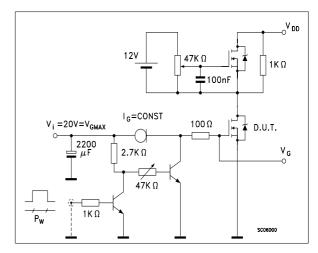

Fig. 1: Unclamped Inductive Load Test Circuit

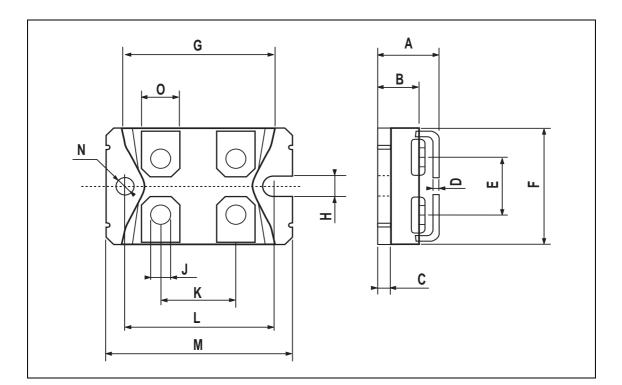
Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

6/8

Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	11.8		12.2	0.466		0.480	
В	8.9		9.1	0.350		0.358	
С	1.95		2.05	0.076		0.080	
D	0.75		0.85	0.029		0.033	
E	12.6		12.8	0.496		0.503	
F	25.15		25.5	0.990		1.003	
G	31.5		31.7	1.240		1.248	
Н	4			0.157			
J	4.1		4.3	0.161		0.169	
К	14.9		15.1	0.586		0.594	
L	30.1		30.3	1.185		1.193	
М	37.8		38.2	1.488		1.503	
Ν	4			0.157			
0	7.8		8.2	0.307		0.322	

ISOTOP MECHANICAL DATA

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

8/8