

Rad-hard 60 V, 0.6 A PNP transistor

Pin 4 in UB is connected to the metallic lid.

DS10460

Features

V _{CBO}	l _C (max.)		H _{FE} at 10 V, 150 mA	T _j (max.)
60 V	ESCC	0.5 A	> 100	200 °C
00 V	JANS	0.6 A	> 100	200 C

- Hermetic packages
- ESCC and JANS qualified
- Up to 100 krad(Si) low dose rate

Description

The 2N2907AHR is a silicon planar PNP transistor specifically designed and housed in hermetic packages for aerospace and Hi-Rel applications. It is available in the JAN qualification system (MIL-PRF19500 compliance) and in the ESCC qualification system (ESCC 5000 compliance). In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

Product summary

	Product summary							
Part-number	Qualification Agency system specification		Package	Radiation level				
JANSR2N2907AUBx	JANSR	MIL-PRF-19500/291	UB	100 krad				
JANS2N2907AUBx	JANS	MIL-PRF-19500/291	UB	-				
2N2907ARUBx	ESCC Flight	5202/001	UB	100 krad				
2N2907AUBx	ESCC Flight	5202/001	UB	-				
SOC2907ARHRx	ESCC Flight	5202/001	LCC-3	100 krad				
SOC2907AHRx	ESCC Flight	5202/001	LCC-3	-				

Note: See Table 9 for ordering information.

Product status link 2N2907AHR

1 Electrical ratings

Note: For PNP transistor voltage and current polarity is reversed.

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _{CBO}	Collector-base voltage (I _E = 0)		-60	V
V _{CEO}	Collector-emitter voltage (I _B = 0)		-60	V
V _{EBO}	Emitter-base voltage (I _C = 0)		-5	V
la.	Collector current	ESCC	0.5	_
Ic	Collector current	JANS	0.6	Α
		ESCC	0.4	
	Total dissination at T	LCC-3 and UB		
P _{TOT}	Total dissipation at T _{amb} ≤ 25 °C	LCC-3 and UB ⁽¹⁾	0.73	W
		JANS: UB	0.5	
	Total dissipation at T _{SP(IS)} = 25 °C	JANS: UB	1	W
T _{OP}	Operating temperature range	·	-65 to 200	°C
T _J	Max. operating junction temperature	200	°C	

^{1.} When mounted on a 15 x 15 x 0.6 mm ceramic substrate.

Table 2. Thermal data

Symbol	Parameter	LCC-3 and UB Value	Unit
R _{thJSP(IS)}	Thermal resistance junction-solder pad (infinite sink) (max) for JANS	90	
	Thermal resistance junction-ambient (max) for JANS	325	°C/W
RthJA	Thermal resistance junction-ambient (max) for ESCC		0/11

^{1.} When mounted on a 15 x 15 x 0.6 mm ceramic substrate.

DS6095 - Rev 12 page 2/18

Electrical characteristics

JANS and ESCC version of the products are assembled and tested in compliance with the agency specification. The electrical characteristics of each version are provided in dedicated tables.

2.1 **JANS** electrical characteristics

Table 3. Electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

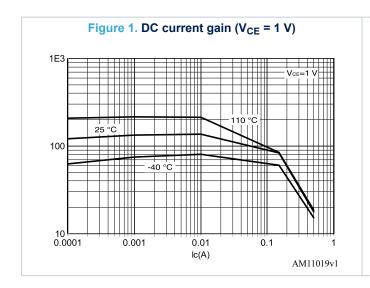
Symbol	Parameter	Test conditions		Max.	Unit
		V _{CB} = 60 V		10	μA
I_{CBO}	Collector-base cut-off current (I _E = 0)	V _{CB} = 50 V		10	nA
		V _{CB} = 50 V, T _{amb} = 150 °C		10	μA
I _{CES}	Collector-base cut-off current (I _E = 0)	V _{CE} = 50 V		50	nA
l	Emitter-base cut-off current (I _C = 0)	V _{EB} = 5 V		10	μΑ
I _{EBO}	Emiller-pase cut-on current (IC = 0)	V _{EB} = 4 V		50	nA
V _{(BR)CEO} (1)	Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA	60		V
V (1)	0-11	I _C = 150 mA, I _B = 15 mA		0.4	V
V _{CE(sat)} (1)	Collector-emitter saturation voltage	I _C = 500 mA, I _B = 50 mA		1.6	V
V (1)	Daga areithar ach matical valle as	I _C = 150 mA, I _B = 15 mA	0.6	1.3	V
V _{BE(sat)} (1)	Base-emitter saturation voltage	I _C = 500 mA, I _B = 50 mA		2.6	V
		I _C = 0.1 mA, V _{CE} = 10 V	75		
		I _C = 1 mA, V _{CE} = 10 V	100	450	
h (1)	DC aumant main	I _C = 10 mA, V _{CE} = 10 V	100		
h _{FE} ⁽¹⁾	DC current gain	I _C = 150 mA, V _{CE} = 10 V	100	300	
		I _C = 500 mA, V _{CE} = 10 V	50		
		I _C = 10 mA, T _{amb} = -55 °C, V _{CE} = 10 V	50		
h.	Consult of small or small and a sign	I _C = 20 mA, f = 100 MHz, V _{CE} = 20 V	2		
h _{fe}	Small signal current gain	I _C = 1 mA, f = 1 kHz, V _{CE} = 10 V	100		
C _{OBO}	Output capacitance, (I _E = 0)	100 kHz ≤ f ≤ 1 MHz, V _{CB} = 10 V		8	pF
C _{IBO}	Input capacitance, (I _C = 0)	100 kHz ≤ f ≤ 1 MHz, V _{EB} = 2 V		30	pF
t _{on}	Turn-on time	I _{CC} = 150 mA, I _{B1} = 15 mA, V _{CC} = 30 V		45	ns
t _{off}	Turn-off time	I _{CC} = 150 mA, I _{B1} = -I _{B2} = 15 mA, V _{CC} = 30 V		300	ns

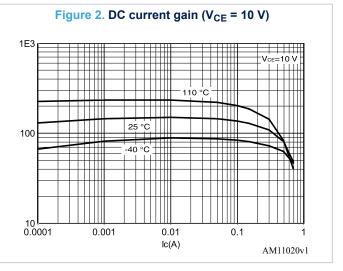
^{1.} Pulsed duration = 300 µs, duty cycle ≤ 1.5%

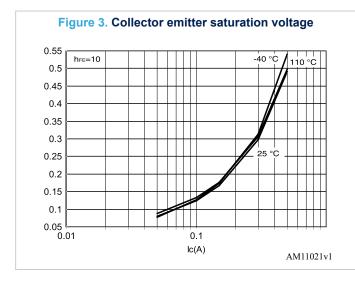
DS6095 - Rev 12 page 3/18

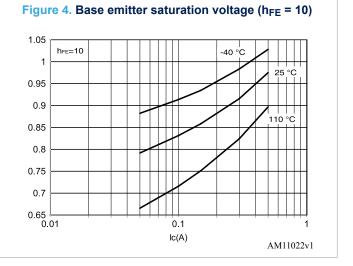
2.2 ESCC electrical characteristics

Table 4. Electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

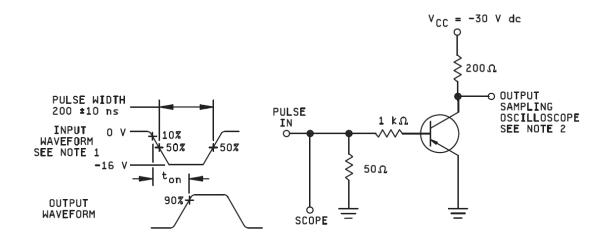

Symbol	Parameter	Test conditions	Min.	Max.	Unit
1	Collector-base cut-off current	V _{CB} = 50 V		10	nA
Ісво	(I _E = 0)	V _{CB} = 50 V, T _{amb} = 150 °C		10	μA
I _{CEX}	Collector-emitter cut-off current	V _{CE} = 30 V, V _{BE} = -0.5 V		50	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 10 μA	60		V
V _{(BR)CEO} (1)	Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA	60		V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _C = 10 μA	5		V
V _{CE(sat)} (1)	Collector-emitter saturation voltage	I _C = 150 mA, I _B = 15 mA		0.4	V
V _{BE(sat)} (1)	Base-emitter saturation voltage	I _C = 150 mA, I _B = 15 mA		1.3	V
		I _C = 0.1 mA, V _{CE} = 10 V	75		
b (1)	DC surrent rain	I _C = 10 mA, V _{CE} = 10 V	100		
h _{FE} ⁽¹⁾	DC current gain	I _C = 150 mA, V _{CE} = 10 V	100	300	
		I _C = 500 mA, V _{CE} = 10 V	50		
h _{fe}	Small signal current gain	I _C = 20 mA, f = 100 MHz, V _{CE} = 20 V	2		
C _{OBO}	Output capacitance (I _E = 0)	100 kHz ≤ f ≤ 1 MHz, V _{CB} = 10 V		8	pF
		I _{CC} = 150 mA,			
t _{on}	Turn-on time	I _{B1} = 15 mA,		45	ns
		V _{CC} = 30 V			
		I _{CC} = 150 mA,			
$t_{\rm off}$	Turn-off time	$I_{B1} = -I_{B2} = 15 \text{ mA},$		300	ns
		V _{CC} = 30 V			


^{1.} Pulsed duration = 300 μ s, duty cycle \leq 1.5%


DS6095 - Rev 12 page 4/18



2.3 Electrical characteristics (curves)



DS6095 - Rev 12 page 5/18

2.4 Test circuits

Figure 5. JANS saturated turn-on switching time test circuit

Note: (1) The rise time (t_r) of the applied pulse should be ≤ 2.0 ns, duty cycle ≤ 2 percent, and the generator source impedance shall be ≤ 0.0 ns.

Note: (2) Sampling oscilloscope: $Z_{IN} \ge 100 \text{ k}\Omega$, $C_{IN} \le 12 \text{ pF}$, rise time $\le 5 \text{ns}$.

Figure 6. JANS saturated turn-off switching time test circuit

Note: (1) The rise time (t_r) of the applied pulse should be ≤ 2.0 ns, duty cycle ≤ 2 percent, and the generator source impedance shall be ≤ 0.0 ns.

Note: (2) Sampling oscilloscope: $Z_{IN} \ge 100 \text{ k}\Omega$, $C_{IN} \le 12 \text{ pF}$, rise time $\le 5 \text{ns}$.

DS6095 - Rev 12 page 6/18

DS10090

R_{BB(2)}

Figure 7. ESCC resistive load switching test circuit

Note: (1) Fast electronic switch

Note: (2) Non-inductive resistor

DS6095 - Rev 12

Downloaded from Arrow.com.

3 Radiation hardness assurance

3.1 JANS radiation assurance

JANSR2N2907A is guaranteed at 100 krad in compliance with the MIL-PRF-19500, Group D between 50 and 300 rad/s with an additional guarantee at 0.1 rad/s as per ESCC 22900.

Table 5. MIL-PRF-19500 post radiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Max	Unit
1	Collector out off current (I_ = 0)	V _{CB} = 60 V		20	μA
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 50 V		20	nA
	Emitter out off ourrent (L = 0)	V _{EB} = 5 V		20	μA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 4 V		100	nA
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA	60		V
I _{CES}	Collector to emitter cut-off current	V _{CE} = 50 V		100	nA
V	Collector-emitter saturation voltage	I _C = 150 mA, I _B = 15 mA		0.46	.,
VCE(sat)		I _C = 500 mA, I _B = 50 mA		1.84	V
V		I _C = 150 mA, I _B = 15 mA	0.6	1.5	V
V _{BE(sat)}	Base-emitter saturation voltage	I _C = 500 mA, I _B = 50 mA		3	V
		I _C = 0.1 mA, V _{CE} = 10 V	[37.5](2)		
		I _C = 1.0 mA, V _{CE} = 10 V	[50] ⁽²⁾	450	
[h _{FE}]	Post irradiation gain calculation	I _C = 10 mA, V _{CE} = 10 V	[50] ⁽²⁾		
		I _C = 150 mA, V _{CE} = 10 V	[50] ⁽²⁾	300	
		I _C = 500 mA, V _{CE} = 10 V	[25](2)		

^{1.} Pulsed duration = 300 μs, duty cycle ≥ 2 %

DS6095 - Rev 12 page 8/18

^{2.} See method 1019 of MIL-STD-750 for how to determine [hFE] by first calculating the delta (1/hFE) from the pre- and Post-radiation hFE. Notice the [hFE] is not the same as hFE and cannot be measured directly. The [hFE] value can never exceed the pre-radiation minimum hFE that it is based upon.

3.2 ESCC radiation assurance

This products is guaranteed in radiation as per ESCC 22900 and in compliance with ESCC 5202/001 specification.

Each lot is tested in radiation according to the following procedure:

- Radiation condition of 0.1 rad (Si)/s.
- Test of 11 samples by wafer, 5 biased at 80% of V(BR)CEO, 5 unbiased and for reference.
- Acceptance criteria of each wafer at 100 krad if all 10 samples comply with the post radiation electrical characteristics as per Table 6.

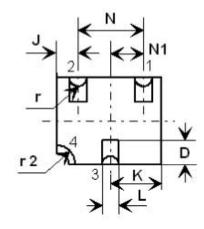
Table 6. ESCC 5202/001 post radiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

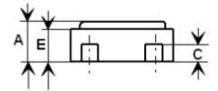
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 50 V		-	10	nA
I _{CEX}	Collector-emitter cut-off current	V _{CE} = 30 V, V _{BE} = -0.5 V		-	50	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C =10 μA	60	-		V
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA	60			V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 10 μA	5	-		V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	I _C =150 mA, I _B = 15 mA		-	0.4	V
V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	I _C = 150 mA, I _B = 15 mA		-	1.3	V
		I _C = 0.1 mA, V _{CE} = 10 V	[30]	-		
[h1(1)	Post irradiation gain calculation (2)	I _C = 10 mA, V _{CE} = 10 V	[50]	-		
[!!FE]\`'		I _C = 150 mA, V _{CE} = 10 V	[50]	-	300	
		I _C = 500 mA, V _{CE} = 10 V	[25]	-		

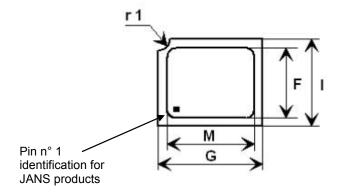
^{1.} Pulsed duration = 300 μs, duty cycle ≥ 2 %

DS6095 - Rev 12 page 9/18

^{2.} The post-irradiation gain calculation of $[h_{FE}]$, made using h_{FE} measurements from prior to and on completion of irradiation testing and after each annealing step if any, shall be as specified in MILSTD-750 method 1019.




4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 UB package information

Figure 8. UB package outline

Pad 1: Emitter

Pad 2: Base

Pad 3: Collector

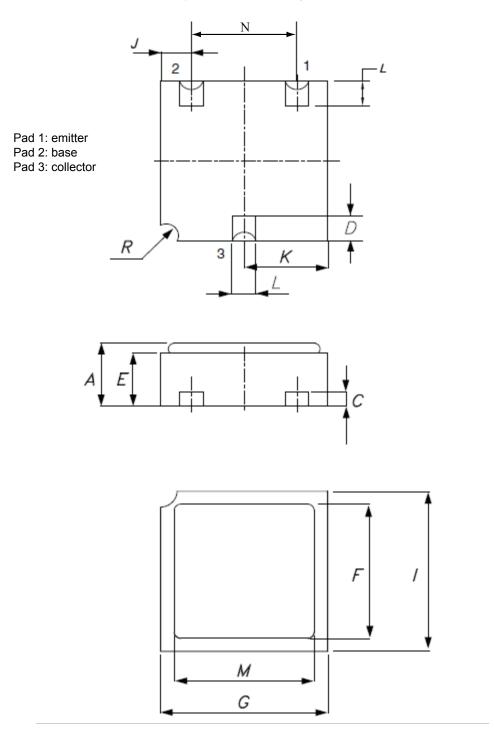
Pad 4: Shielding connected to the lid

8206487 rev.6

Note:

For JANS products: the pin out numbering for emitter and base is inverted (base is designated pin 1 and emitter pin 2)

Table 7. UB package mechanical data


Cymholo	Dimensions in mm		Dimensio	Dimensions in inches (for reference only)			
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	1.16		1.42	0.045		0.056	
С	0.46	0.51	0.56	0.018	0.020	0.022	
D	0.56	0.76	0.96	0.024	0.030	0.036	
E	0.92	1.02	1.12	0.036	0.040	0.044	
F	1.95	2.03	2.11	0.077	0.080	0.083	
G	2.92	3.05	3.18	0.115	0.120	0.125	
I	2.41	2.54	2.67	0.095	0.100	0.105	
J	0.42	0.57	0.72	0.0165	0.0225	0.0285	
K	1.37	1.52	1.67	0.054	0.060	0.066	
L	0.41	0.51	0.61	0.016	0.020	0.024	
M	2.46	2.54	2.62	0.097	0.100	0.103	
N	1.81	1.91	2.01	0.071	0.075	0.079	
N1	0.91	0.96	1.02	0.036	0.038	0.040	
r		0.20			0.008		
r1		0.30			0.012		
r2		0.56			0.022		

DS6095 - Rev 12 page 11/18

4.2 LCC-3 package information

Figure 9. LCC-3 package outline

0041211 rev.14

Table 8. LCC-3 package mechanical data

Symbols	Dimensions in mm		ensions in mm Dimensions in inches (for refere		ence only)	
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	1.16		1.42	0.046		0.056
С	0.45	0.50	0.56	0.018	0.020	0.022
D	0.60	0.56	0.96	0.024	0.022	0.038
E	0.91	1.01	1.12	0.036	0.040	0.044
F	1.95	2.03	2.11	0.077	0.080	0.083
G	2.92	3.05	3.17	0.115	0.120	0.125
I	2.41	2.54	2.66	0.095	0.100	0.105
J	0.42	0.57	0.72	0.0165	0.0225	0.0285
K	1.37	1.52	1.67	0.054	0.060	0.066
L	0.40	0.50	0.60	0.016	0.020	0.024
М	2.46	2.54	2.62	0.097	0.100	0.103
N	1.80	1.90	2.00	0.071	0.075	0.079
R		0.30			0.012	

DS6095 - Rev 12 page 13/18

5 Ordering information

Table 9. Ordering information

Part number	Agency specification	Quality level	Radiation level ⁽¹⁾	Package	Mass	Lead finish	Mar
J2N2907AUB1	_	Engineering	_				J290
321 1 2907 AOD 1		model JANS	_	UB			3230
2N2907AUB1	_	Engineering	_	OB			2N29
ZNZSOFAODT	_	model ESCC				Gold	21423
SOC2907A1	_	Engineering	_	LCC-3			SOC
0002307A1	_	model ESCC	_	L00-3			000
JANSR2N2907AUBG		JANSR	100 krad				JSI
JANSR2N2907AUBT	MIL-PRF-	JANSR	high and low dose rate			Solder Dip	JSI
JANS2N2907AUBG	19500/291	JANS				Gold	JS
JANS2N2907AUBT		JANS	_			Solder Dip	JS
2N2907ARUBG	5202/001/06R			UB	0.6 g	Gold	5202
2N2907ARUBT	5202/001/07R		100 krad - low dose rate	-		Solder Dip	5202
2N2907ARUBTW	5202/001/07R					Solder Dip	5202
2N2907AUBG	5202/001/06		-			Gold	5202
2N2907AUBT	5202/001/07		-			Solder Dip	5202
SOC2907ARHRG	5202/001/04R	ESCC Flight				Gold	5202
SOC2907ARHRT	5202/001/05R		100 krad - low dose rate			Solder Dip	5202
SOC2907ARHRTW	5202/001/05R					Solder Dip	5202
SOC2907AHRG	5202/001/04		-	LCC-3		Gold	5202
SOC2907AHRT	5202/001/05		-			Solder Dip	5202
SOC2907AHRTW	5202/001/05		-	-		Solder Dip	5202

^{1.} High dose rate as per MIL-PRF-19500 specification group D, subgroup 2 inspection. Low dose rate as per ESCC specification 229

Contact ST sales office for information about specific conditions for products in die form.

^{2.} Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR), logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

6 Other information

6.1 Traceability information

The date code in formation is structured as described in the table below.

Table 10. Date codes

Model	Date code	
EM	3yywwN	
ESCC	yywwN	
JANS FLIGHT	WyywwN	

^{1.} yy = year, ww = week number, N = lot index in the week.

6.2 Documentation

Table 11. Documentation provided for each type of product

Quality level	Radiation level	Documentation
JANS Flight	-	Certificate of conformance
JANSR Flight	100 krad	Certificate of conformance
		Radiation verification test (RVT) report (50 rad/s and 0.1 rad/s)
Engineering model	-	Certificate of conformance
ESCC	-	Certificate of conformance
		ESCC qualification maintenance lot reference
	100 krad	Certificate of conformance
ESCC		ESCC qualification maintenance lot reference
		Radiation verification test (RVT) report at 25 / 50 / 70 / 100 krad at 0.1 rad / s.

DS6095 - Rev 12 page 15/18

Revision history

Table 12. Document revision history

Date	Revision	Changes
09-Feb-2009	1	Initial release.
05-Jan-2010	2	Modified Table 1: Device summary
30-Nov-2011	3	Minor text changes in the document title and description on the coverpage
14-May-2012	4	New package inserted (UB). Updated: — Table 1: Device summary, Table 2: Absolute maximum ratings and Table 3: Thermal data. — Section 2: Electrical characteristics and Section 4: Package mechanical data. Added:
		- Section : and Section 6: Shipping details.
03-Jun-2013	5	Added: - New section Radiation hardness assurance - Corrected the revision number and dates of revision 3.
18-Sep-2013	6	Updated Table 1: Device summary and Table 13: Ordering information
05-May-2014	7	Updated Table 1: Device summary, Table 13: Ordering information and Section 3: Radiation hardness assurance. Added Figure 2: Safe operating area for TO-18 and Figure 3: Safe operating area for LCC-3
29-May-2014	8	Added note 1 in Table 13: Ordering information.
21-Aug-2015	9	Modified: Section 4.3: TO-18 package information Minor text changes.
02-Dec-2015	10	Updated Figure 2.: Safe operating area for TO-18 and Figure 3.: Safe operating area for LCC-3. Minor text chages.
16-Apr-2020	11	Removed TO-18 package information. Minor text changes.
02-Feb-2021	12	Updated Table 1, Table 3, Table 6, Figure 9, Table 9 and Table 11. Removed Radiation summary table. Minor text changes.

DS6095 - Rev 12 page 16/18

Contents

1	Elec	ctrical ratings	2			
2	Elec	Electrical characteristics				
	2.1	JANS electrical characteristics	3			
	2.2	ESCC electrical characteristics	4			
	2.3	Electrical characteristics (curves)	5			
	2.4	Test circuits	6			
3	Radiation hardness assurance					
	3.1	JANS radiation assurance	8			
	3.2	ESCC radiation assurance	9			
4	Package information					
	4.1	UB package information	10			
	4.2	LCC-3 package information	12			
5	Ord	ering information	14			
6	Oth	Other information				
	6.1	Traceability information	15			
	6.2	Documentation	15			
Rev	/ision	history	16			

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS6095 - Rev 12 page 18/18